Excitation pulse width in the peak diffusing method for thermal diffusivity measurement

被引:0
作者
State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Haidian District, Bejing [1 ]
100084, China
机构
[1] State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Haidian District, Bejing
来源
Int. J. Energy Clean Env. | / 1-4卷 / 225-233期
关键词
Alternating direction implicit; IR camera; Peak diffusing method; Pulse width; Thermal diffusivity;
D O I
10.1615/InterJEnerCleanEnv.2015015411
中图分类号
学科分类号
摘要
A peak diffusing method has been proposed lately to characterize the radial thermal diffusivity. This paper reports the latest research progress on the pulse width selection for a Gaussian laser which is utilized as the heat excitation for the peak diffusing method. A three-dimensional heat conduction model is constructed, and the alternating direction implicit (ADI) difference method is applied to calculate the temperature field evolution in the case of the finite pulse width. It is concluded from the numerical calculation results that the thermal diffusivity characterization accuracy will not be affected within the given pulse width. A measurement system is constructed with the finite pulsed Gaussian beam as a source of excitation and an IR camera as a temperature detector. Within the 10 ms to 200 ms ranged pulse width, the measured thermal diffusivity of titanium and zirconium plates show errors less than 7.7% and 6.9%, respectively, indicating that the measurement will not be influenced by the given pulse width range. © 2015 by Begell House, Inc.
引用
收藏
页码:225 / 233
页数:8
相关论文
共 10 条
  • [1] Araki N., Yang J., Tang D., Makino A., Measurement of the thermal diffusivity of layered film by periodic heating, High Temp. - High Press., 30, 3, pp. 321-326, (1998)
  • [2] Cernuschi F., Bison P.G., Figari A., Marinetti S., Grinzato E., Thermal diffusivity measurements by photothermal and thermographic techniques, Int. J. Thermophys., 25, 2, pp. 439-457, (2004)
  • [3] Cernuschi F., Russo A., Lorenzoni L., Figari A., In-plane thermal diffusivity evaluation by infrared thermography, Rev. Sci. Instrum., 72, 10, pp. 3988-3995, (2001)
  • [4] Dong H.L., Zheng B.Y., Chen F.F., Peak diffusing measurement method for estimating thermal diffusivity of thin films, Adv. Mater. Res., 1035, pp. 166-172, (2014)
  • [5] Husin M.S., Moksin M.M., Jibrin S., Azmi B.Z., Yunus W.M.M., Waziri M., A simplified low-cost converging thermal wave technique for measuring thermal diffusivity of thin foils, IOSR J. Appl. Phys., 3, pp. 38-46, (2013)
  • [6] Incropera F.P., Fundamentals of Heat and Mass Transfer, pp. 905-908, (2011)
  • [7] Kruczek T., Adamczyk W.P., Bialecki R.A., In situ measurement of thermal diffusivity in anisotropic media, Int. J. Thermophys., 34, 3, pp. 467-485, (2013)
  • [8] Kuo P.K., Lin M.J., Reyes C.B., Favro L.D., Thomas R.L., Kim D.S., Yacoubi N., Mirage-effect measurement of thermal diffusivity. Part I: Experiment, Canad. J. Phys., 64, 9, pp. 1165-1167, (1986)
  • [9] McMasters R.L., Dinwiddie R.B., Anisotropic thermal diffusivity measurement using the flash method, J. Thermophys. Heat Transfer, 28, 3, pp. 518-523, (2014)
  • [10] Schneider D., Schwarz T., A photoacoustic method for characterising thin films, Surface Coatings Technol., 91, 1, pp. 136-146, (1997)