Global low regularity solutions to the Benjamin equation in weighted spaces

被引:0
作者
Shindin, Sergey [1 ]
Parumasur, Nabendra [1 ]
机构
[1] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Private Bag X54001, ZA-4000 Durban, South Africa
关键词
Benjamin equation; Weighted Sobolev spaces; Anisotropic Besov-Bourgain spaces; Global well-posedness; WELL-POSEDNESS; CAUCHY-PROBLEM; SOBOLEV SPACES; ONO-EQUATION; IVP;
D O I
10.1016/j.na.2024.113674
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the Benjamin equation is globally well-posed for real-valued data in the weighted space H-s boolean AND H-r(s-2r )& colone; {u |& Vert;u & Vert;(s)(H)(Rx)+& Vert;u & Vert;(H (R))(R xi(+),(1+|xi|)(2(s-2r))d xi)<infinity}, where 0 <= r and -3/4+r<s. The proof is based on direct extensions of standard linear and bilinear estimates originated in Kenig et al. (1993), Kenig et al. (1996), Linares (1999), Kozono et al. (2001), Colliander et al. (2003), Li and Wu (2010) to the weighted settings.
引用
收藏
页数:15
相关论文
共 24 条
[1]   A NEW KIND OF SOLITARY WAVE [J].
BENJAMIN, TB .
JOURNAL OF FLUID MECHANICS, 1992, 245 :401-411
[2]   Solitary and periodic waves of a new kind [J].
Benjamin, TB .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1996, 354 (1713) :1775-1806
[3]   Sharp well-posedness for the Benjamin equation [J].
Chen, W. ;
Guo, Z. ;
Xiao, J. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) :6209-6230
[4]  
Colliander J., 2003, Differential Integral Equations, V16, P1441
[5]   On uniqueness results for solutions of the Benjamin equation [J].
Cunha, Alysson .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 526 (02)
[6]   The IVP for the dispersion generalized Benjamin-Ono equation in weighted Sobolev spaces [J].
Fonseca, German ;
Linares, Felipe ;
Ponce, Gustavo .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2013, 30 (05) :763-790
[7]   The IVP for the Benjamin-Ono equation in weighted Sobolev spaces II [J].
Fonseca, German ;
Linares, Felipe ;
Ponce, Gustavo .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (05) :2031-2049
[8]   The IVP for the Benjamin-Ono equation in weighted Sobolev spaces [J].
Fonseca, German ;
Ponce, Gustavo .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (02) :436-459
[9]  
Grafakos L, 2009, GRAD TEXTS MATH, V250, P1, DOI [10.1007/978-0-387-09434-2_6, 10.1007/978-0-387-09432-8_1]
[10]   WEIGHTED NORM INEQUALITIES FOR CONJUGATE FUNCTION AND HILBERT TRANSFORM [J].
HUNT, R ;
MUCKENHOUPT, B ;
WHEEDEN, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 176 (449) :227-251