Denoising low-field MR images with a deep learning algorithm based on simulated data from easily accessible open-source software

被引:0
作者
Salehi, Aram [1 ,2 ,3 ]
Mach, Mathieu [1 ]
Najac, Chloe [1 ]
Lena, Beatrice [1 ]
O'Reilly, Thomas [1 ]
Dong, Yiming [1 ]
Bornert, Peter [4 ]
Adams, Hieab [2 ,3 ,5 ]
Evans, Tavia [2 ,3 ,6 ]
Webb, Andrew [1 ]
机构
[1] Leiden Univ, Med Ctr, Dept Radiol, Albinusdreef 2, NL-2333 ZA Leiden, Netherlands
[2] Radboud Univ Nijmegen, Dept Human Genet, Med Ctr, Nijmegen, Netherlands
[3] Erasmus MC Univ, Dept Clin Genet, Med Ctr, Rotterdam, Netherlands
[4] Philips Innovat Technol, Hamburg, Germany
[5] Univ Adolfo Ibanez, Latin Amer Brain Hlth Inst, Santiago, Chile
[6] Trinity Coll Dublin, Global Brain Hlth Inst, Dublin, Ireland
基金
欧洲研究理事会;
关键词
Low field MRI; Denoising; Convolutional neural networks; In vivo MRI;
D O I
10.1016/j.jmr.2024.107812
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
In this study, we introduce a denoising method aimed at improving the contrast ratio in low-field MRI (LFMRI) using an advanced 3D deep convolutional residual network model. Our approach employs synthetic brain imaging datasets that closely mimic the contrast and noise characteristics of LFMRI scans, addressing the limitation of available in-vivo LFMRI datasets for training deep learning models. In the simulation data, the Relative Contrast Ratio (RCR) increased, and similar improvements were observed in the in-vivo data across different imaging conditions. Comparative evaluations demonstrate that our model performs better than the widely used non-deep learning method, BM4D, in enhancing RCR and maintaining high spatial frequency components in in- vivo data.
引用
收藏
页数:8
相关论文
共 30 条
  • [1] Ansari I.R., 2013, Int. J. Adv. Technol. Eng. Sci. (IJATES), V1, P42
  • [2] Low-field MRI: Clinical promise and challenges
    Arnold, Thomas Campbell
    Freeman, Colbey W.
    Litt, Brian
    Stein, Joel M.
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2023, 57 (01) : 25 - 44
  • [3] Cardoso M. J., 2022, arXiv, DOI [DOI 10.48550/ARXIV.2211.02701, 10.48550/arXiv.2211.02701]
  • [4] Image denoising by sparse 3-D transform-domain collaborative filtering
    Dabov, Kostadin
    Foi, Alessandro
    Katkovnik, Vladimir
    Egiazarian, Karen
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (08) : 2080 - 2095
  • [5] Deep Learning-based Method for Denoising and Image Enhancement in Low-Field MRI
    Dang Bich Thuy Le
    Sadinski, Meredith
    Nacev, Aleksandar
    Narayanan, Ram
    Kumar, Dinesh
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS AND TECHNIQUES (IST), 2021,
  • [6] Optimal bilateral filter and Convolutional Neural Network based denoising method of medical image measurements
    Elhoseny, Mohamed
    Shankar, K.
    [J]. MEASUREMENT, 2019, 143 : 125 - 135
  • [7] Accessible magnetic resonance imaging: A review
    Geethanath, Sairam
    Vaughan, John Thomas, Jr.
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2019, 49 (07) : E65 - E77
  • [8] Gondara L, 2016, INT CONF DAT MIN WOR, P241, DOI [10.1109/ICDMW.2016.0041, 10.1109/ICDMW.2016.102]
  • [9] Gopinathan S., 2015, Int. J. Electr. Comput. Eng., V5, P1018, DOI 10.11591/ijece.v5i5.pp1018-1026
  • [10] Improved BM3D image denoising using SSIM-optimized Wiener filter
    Hasan, Mahmud
    El-Sakka, Mahmoud R.
    [J]. EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2018,