Low-velocity impact resistance behaviors of bionic hybrid-helicoidal composite laminates

被引:1
|
作者
Deng, Yabin [1 ,2 ,3 ]
Jiang, Hongyong [1 ,2 ,3 ,4 ]
Ren, Yiru [1 ,2 ,3 ]
机构
[1] Hunan Univ, State Key Lab Adv Design & Mfg Vehicle Body, Changsha 410082, Hunan, Peoples R China
[2] Hunan Univ, Coll Mech & Vehicle Engn, Changsha 410082, Hunan, Peoples R China
[3] Hunan Univ, Key Lab Adv Design & Simulat Tech Special Equipmen, Minist Educ, Changsha 410082, Hunan, Peoples R China
[4] China Univ Geosci, Sch Mech Engn & Elect Informat, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Low-velocity; Impact resistance; Bio-inspired; Composite laminates; Modeling; COMPRESSION; PERFORMANCE; PREDICTION; MECHANICS; NANOCLAY; DESIGN;
D O I
10.1016/j.compstruct.2024.118614
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The exoskeleton of the Homarus americanus lobster feature a hybrid-helicoidal structure of chitin-protein fibers, with distinct helicoidal configurations in the exocuticle and endocuticle, exhibiting strong impact resistance. Taking inspiration from this biological structure, combined with single-helicoidal and double-helicoidal structures, various helicoidal configurations of composite laminates were designed. Both linear and nonlinear helicoidal angles, including sinusoidal and exponential configurations, were considered. The interlaminar and intralaminar damage mode were adopted to simulate material damage initiation and evolution. The effect of helicoidal angles, position, thickness and angle variations of endocuticle on low-velocity impact resistance was analyzed, revealing the damage mechanisms of bio-inspired laminates. The results show that bio-inspired hybrid helicoidal structures with special features could significantly enhance the impact resistance of composites, with laminates featuring sinusoidal-exponential double helicoidal structures showing superior performance. Sinusoidal configurations, being less prone to penetration, are more suitable for the exocuticle. The introduction of double-helicoidal configurations could enhance the toughness and strength of the structure. This studying deepened an understanding of failure mechanisms of bio-inspired helicoidal composite laminates under lowvelocity impact and provide a design strategies for developing high-performance, impact-resistant composite materials.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] The response of hybrid titanium carbon laminates to the low-velocity impact
    Jakubczak, P.
    Bienias, J.
    ENGINEERING FRACTURE MECHANICS, 2021, 246
  • [22] The response of hybrid titanium carbon laminates to the low-velocity impact
    Jakubczak, P.
    Bieniaś, J.
    Engineering Fracture Mechanics, 2021, 246
  • [23] PARAMETRIC STUDIES OF SHAPE MEMORY ALLOY HYBRID COMPOSITE LAMINATES UNDER LOW-VELOCITY IMPACT
    Lin, Y-C.
    Chen, Y-L.
    Chen, H-W.
    JOURNAL OF MECHANICS, 2016, 32 (05) : 565 - 577
  • [24] Low-velocity impact response and damage tolerance of hybrid biaxial/triaxial braided composite laminates
    Wu, Zhenyu
    Wang, Kang
    Shi, Lin
    Cheng, Xiaoying
    Yuan, Yanhong
    POLYMER COMPOSITES, 2023, 44 (06) : 3068 - 3083
  • [25] Global sensitivity analysis of low-velocity impact response of bio-inspired helicoidal laminates
    Yang, Fan
    Xie, Weihua
    Meng, Songhe
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2020, 187
  • [26] Low-velocity impact resistance of the Z-pin reinforced carbon fiber composite laminates
    Wu, Wenyun
    Guo, Zhangxin
    Shi, Haolin
    Niu, Weijing
    Chai, Gin Boay
    Li, Yongcun
    POLYMER COMPOSITES, 2025, 46 (02) : 1699 - 1713
  • [27] Predicting damage behaviors of composite laminates under multiple low-velocity impacts
    Lyu, Qihui
    Wang, Ben
    Zhao, Zhenqiang
    Bai, Risheng
    Guo, Zaoyang
    Wang, Biao
    POLYMER COMPOSITES, 2024, 45 (05) : 4760 - 4775
  • [28] On multiple low-velocity impact response and compression after impact of composite laminates
    Hu, Peng
    Jian, Yue'ao
    Hu, Cheng
    Zhang, Nan
    Wang, Xinwei
    Cai, Deng'an
    Zhou, Guangming
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2025, 32 (06) : 1043 - 1057
  • [29] Probability Analysis for Impact Behavior of Composite Laminates Subjected to Low-Velocity Impact
    Ha, Seung-Chul
    Kim, In-Gul
    Lee, Seokje
    Cho, Sang-Gyu
    Jang, Moon-Ho
    Choi, Ik-Hyeon
    COMPOSITES RESEARCH, 2009, 22 (06): : 18 - 22
  • [30] Numerical investigation on the repeated low-velocity impact behavior of composite laminates
    Zhou, Junjie
    Wen, Pihua
    Wang, Shengnan
    COMPOSITES PART B-ENGINEERING, 2020, 185