Rapid prototyping of scaphoid and lunate bones

被引:33
作者
Gittard, Shaun D. [1 ]
Narayan, Roger J. [1 ,7 ]
Lusk, Jason [2 ]
Morel, Pierre [2 ]
Stockmans, Filip [3 ]
Ramsey, Michael [4 ]
Laverde, Claire [4 ]
Phillips, Jack [4 ]
Monteiro-Riviere, Nancy A. [1 ,5 ]
Ovsianikov, Aleksandr [6 ]
Chichkov, Boris N. [6 ]
机构
[1] Joint Department of Biomedical Engineering, University of North Carolina, North Carolina State University, Raleigh, NC
[2] ElectroForce Systems Group, Bose Corporation, Eden Prairie, MN
[3] Katholieke Universiteit Leuven, Heule Kortrijk
[4] Cardinal Health, Creedmoor, NC
[5] Center for Chemical Toxicology Research and Pharmacokinetics, North Carolina State University, Raleigh, NC
[6] Nanotechnology Department, Laser Zentrum Hannover e.V., Hannover
[7] University of North Carolina - Biomedical Engineering, Chapel Hill, NC 27599-7575
基金
美国国家科学基金会;
关键词
Biomaterials; Prostheses; Rapid prototyping;
D O I
10.1002/biot.200800233
中图分类号
学科分类号
摘要
In this study, a novel rapid prototyping technology was used to fabricate scaphoid and lunate bone prostheses, two carpal bones that are prone to avascular necrosis. Carpal prostheses were fabricated with an Envisiontec Perfactory® SXGA stereolithography system using Envisiontec eShell 200 photocurable polymer. Fabrication was guided using 3-D models, which were generated using Mimics software (Materialise NV, Leuven, Belgium) from patient computer tomography data. The prostheses were fabricated in a layer-by-layer manner; ∼50-μm thick layers were observed in the prostheses. Hardness and Young's modulus values of polymerized eShell 200 material were 93.8 ± 7.25 MPa and 3050 ± 90 MPa, respectively. The minimum compressive force required for fracture was 1360 N for the scaphoid prosthesis and 1248 N for the lunate prosthesis. Polymerized Envisiontec eShell material exhibited high human neonatal epidermal keratinocyte cell viability rate in an MTT assay. The results of this study indicate that small bone prostheses fabricated by stereolithography using eShell 200 polymer may have suitable geometry, mechanical properties, and cytocompatibility properties for in vivo use. © 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:129 / 134
页数:5
相关论文
共 35 条
[1]  
Lee C.C., Syed H., Crupi R.S., Avascular necrosis of common bones seen in the ED, Am. J. Emerg. Med, 21, pp. 336-338, (2003)
[2]  
Botte M.J., Pacelli L.L., Gelberman R.H., Vascularity and osteonecrosis of the wrist, Orthop. Clin. North Am, 35, pp. 405-421, (2004)
[3]  
Ceri N., Korman E., Gunal I., Tetik S., The morphological and morphometric features of the scaphoid, J. Hand Surg. Eur. [Br], 29, pp. 393-398, (2004)
[4]  
Gupta A., Al-Moosawi N.M., Lunate morphology, J. Biomech, 35, pp. 1451-1457, (2002)
[5]  
Bunk B., Frokjaer J., Larsen C.F., Johannsen H.G., Et al., Diagnosis of scaphoid fractures. A prospective multicenter study of 1052 patients with 160 fractures, Acta Orthop. Scand, 66, pp. 359-360, (1995)
[6]  
Kienbock R., Uber traumatische Malazie des Mondbeinesund ihre Folgezustande: Entartungsformen und Kompressionsfrakturen., Fortschr. Geb. Roentgenstr. Nuklearmed, 16, pp. 77-103, (1910)
[7]  
Ferlic D.C., Morin P., Idiopathic avascular necrosis of the scaphoid: Preiser's disease?, J. Hand Surg. [Am], 14, pp. 13-16, (1989)
[8]  
Allen P.R., Idiopathic avascular necrosis of the scaphoid: A report of two cases, J. Bone Joint Surg. Br, 65, pp. 333-335, (1983)
[9]  
Swanson A.B., Silicone rubber implants for the replacement of the carpal scaphoid and lunate bones, Orthop. Clin. North. Am, 1, pp. 299-309, (1970)
[10]  
Lichtman D.M., Alexander A.H., Mack G.R., Gunther S.F., Kienbock's disease. Update on silicone replacement arthroplasty, J. Hand Surg. [Am], 7, pp. 343-347, (1982)