A Survey on Android Malware Detection Techniques Using Supervised Machine Learning

被引:0
|
作者
Altaha, Safa J. [1 ]
Aljughaiman, Ahmed [1 ]
Gul, Sonia [1 ]
机构
[1] King Faisal Univ, Coll Comp Sci & Informat Technol, Dept Comp Networks & Commun, Al Hasa 31982, Saudi Arabia
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Malware; Smart phones; Operating systems; Trojan horses; Security; Libraries; Codes; Ransomware; User interfaces; Surveys; Android; Android malware; malware detection; supervised machine learning; FEATURES;
D O I
10.1109/ACCESS.2024.3485706
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Android's open-source nature has contributed to the platform's rapid growth and its widespread adoption. However, this widespread adoption of the Android operating system (OS) has also attracted the attention of malicious actors who develop malware targeting these devices. Android malware threatens users' privacy, data security, and overall device performance. Machine learning (ML) plays a significant role in malware analysis and detection because it can process huge amounts of data, identify complex patterns, and adjust to changing threats. The purpose of this paper is to provide a comprehensive review of the existing research on ML-based techniques used to detect and analyze Android malware. In this paper, the security weaknesses in Android OS are explored and the reasons why these weaknesses do not exist in the iPhone operating system (iOS) are discussed. Further, the authors examine the existing studies that have been proposed by researchers and outlines their strengths and limitations. The findings reveal that the existing researches utilize different ML models, features, and detection techniques, including static, dynamic, and hybrid approaches. Moreover, directions for future research and potential areas that require more attention and improvement in this field are highlighted.
引用
收藏
页码:173168 / 173191
页数:24
相关论文
共 50 条
  • [41] An Overview of Techniques for Obfuscated Android Malware Detection
    Siddiqui S.
    Khan T.A.
    SN Computer Science, 5 (4)
  • [42] Android Malware Detection Based on Machine Learning
    Wang, Qing-Fei
    Fang, Xiang
    2018 4TH ANNUAL INTERNATIONAL CONFERENCE ON NETWORK AND INFORMATION SYSTEMS FOR COMPUTERS (ICNISC 2018), 2018, : 434 - 436
  • [43] A Novel Knowledge Search Structure for Android Malware Detection
    Zhu, Huijuan
    Xia, Mengzhen
    Wang, Liangmin
    Xu, Zhicheng
    Sheng, Victor S.
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2024, 17 (06) : 3052 - 3064
  • [44] Static Analysis of Android Malware Detection using Deep Learning
    Sandeep, H. R.
    PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICCS), 2019, : 841 - 845
  • [45] PAIRED: An Explainable Lightweight Android Malware Detection System
    Alani, Mohammed M.
    Awad, Ali Ismail
    IEEE ACCESS, 2022, 10 : 73214 - 73228
  • [46] A Review of Android Malware Detection Approaches Based on Machine Learning
    Liu, Kaijun
    Xu, Shengwei
    Xu, Guoai
    Zhang, Miao
    Sun, Dawei
    Liu, Haifeng
    IEEE ACCESS, 2020, 8 (08): : 124579 - 124607
  • [47] Use of Machine Learning Algorithms for Android App Malware Detection
    Rawat, Shaurya
    Phira, Rushang
    Natu, Prachi
    2021 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, COMMUNICATION, COMPUTER TECHNOLOGIES AND OPTIMIZATION TECHNIQUES (ICEECCOT), 2021, : 448 - 454
  • [48] Android Malware Detection: An Empirical Investigation into Machine Learning Classifiers
    Raval, Aaditya
    Anwar, Mohd
    2024 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION FOR DATA SCIENCE, IRI 2024, 2024, : 144 - 149
  • [49] MDTA: A New Approach of Supervised Machine Learning for Android Malware Detection and Threat Attribution Using Behavioral Reports
    Vanjire, Seema Sachin
    Lakshmi, M.
    MOBILE COMPUTING AND SUSTAINABLE INFORMATICS, 2022, 68 : 147 - 159
  • [50] A review of detecting malware in android devices based on machine learning techniques
    Sharma, Monika
    Kaul, Ajay
    EXPERT SYSTEMS, 2024, 41 (01)