Individualized decision making in on-scene resuscitation time for out-of-hospital cardiac arrest using reinforcement learning

被引:1
作者
Choi, Dong Hyun [1 ]
Lim, Min Hyuk [2 ,3 ]
Hong, Ki Jeong [4 ,5 ]
Kim, Young Gyun [6 ]
Park, Jeong Ho [4 ,5 ]
Song, Kyoung Jun [5 ,7 ]
Do Shin, Sang [4 ,5 ]
Kim, Sungwan [1 ]
机构
[1] Seoul Natl Univ, Coll Med, Dept Biomed Engn, Seoul, South Korea
[2] Ulsan Natl Inst Sci & Technol UNIST, Grad Sch Hlth Sci & Technol, Ulsan, South Korea
[3] Ulsan Natl Inst Sci & Technol UNIST, Dept Biomed Engn, Ulsan, South Korea
[4] Seoul Natl Univ, Coll Med & Hosp, Dept Emergency Med, Seoul, South Korea
[5] Seoul Natl Univ Hosp, Biomed Res Inst, Lab Emergency Med Serv, Seoul, South Korea
[6] Seoul Natl Univ, Grad Sch, Interdisciplinary Program Bioengn, Seoul, South Korea
[7] Seoul Natl Univ, Boramae Med Ctr, Dept Emergency Med, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
EXTRACORPOREAL CARDIOPULMONARY-RESUSCITATION; VENTRICULAR-FIBRILLATION; OUTCOMES; SURVIVAL; INTERVAL;
D O I
10.1038/s41746-024-01278-3
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
On-scene resuscitation time is associated with out-of-hospital cardiac arrest (OHCA) outcomes. We developed and validated reinforcement learning models for individualized on-scene resuscitation times, leveraging nationwide Korean data. Adult OHCA patients with a medical cause of arrest were included (N = 73,905). The optimal policy was derived from conservative Q-learning to maximize survival. The on-scene return of spontaneous circulation hazard rates estimated from the Random Survival Forest were used as intermediate rewards to handle sparse rewards, while patients' historical survival was reflected in the terminal rewards. The optimal policy increased the survival to hospital discharge rate from 9.6% to 12.5% (95% CI: 12.2-12.8) and the good neurological recovery rate from 5.4% to 7.5% (95% CI: 7.3-7.7). The recommended maximum on-scene resuscitation times for patients demonstrated a bimodal distribution, varying with patient, emergency medical services, and OHCA characteristics. Our survival analysis-based approach generates explainable rewards, reducing subjectivity in reinforcement learning.
引用
收藏
页数:14
相关论文
共 56 条
[1]   Personalized Medicine and the Power of Electronic Health Records [J].
Abul-Husn, Noura S. ;
Kenny, Eimear E. .
CELL, 2019, 177 (01) :58-69
[2]   Reliability of the Cerebral Performance Category to classify neurological status among survivors of ventricular fibrillation arrest: a cohort study [J].
Ajam, Kamal ;
Gold, Laura S. ;
Beck, Stacey S. ;
Damon, Susan ;
Phelps, Randi ;
Rea, Thomas D. .
SCANDINAVIAN JOURNAL OF TRAUMA RESUSCITATION & EMERGENCY MEDICINE, 2011, 19
[3]   "Resuscitation time bias"-A unique challenge for observational cardiac arrest research [J].
Andersen, Lars W. ;
Grossestreuer, Anne V. ;
Donnino, Michael W. .
RESUSCITATION, 2018, 125 :79-82
[4]   An introduction to modern missing data analyses [J].
Baraldi, Amanda N. ;
Enders, Craig K. .
JOURNAL OF SCHOOL PSYCHOLOGY, 2010, 48 (01) :5-37
[5]   Effect of Intra-arrest Transport, Extracorporeal Cardiopulmonary Resuscitation, and Immediate Invasive Assessment and Treatment on Functional Neurologic Outcome in Refractory Out-of-Hospital Cardiac Arrest A Randomized Clinical Trial [J].
Belohlavek, Jan ;
Smalcova, Jana ;
Rob, Daniel ;
Franek, Ondrej ;
Smid, Ondrej ;
Pokorna, Milana ;
Horak, Jan ;
Mrazek, Vratislav ;
Kovarnik, Tomas ;
Zemanek, David ;
Kral, Ales ;
Havranek, Stepan ;
Kavalkova, Petra ;
Kompelentova, Lucie ;
Tomkova, Helena ;
Mejstrik, Alan ;
Valasek, Jaroslav ;
Peran, David ;
Pekara, Jaroslav ;
Rulisek, Jan ;
Balik, Martin ;
Huptych, Michal ;
Jarkovsky, Jiri ;
Malik, Jan ;
Valerianova, Anna ;
Mlejnsky, Frantisek ;
Kolouch, Petr ;
Havrankova, Petra ;
Romportl, Dan ;
Komarek, Arnost ;
Linhart, Ales .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2022, 327 (08) :737-747
[6]   Artificial intelligence framework for simulating clinical decision-making: A Markov decision process approach [J].
Bennett, Casey C. ;
Hauser, Kris .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2013, 57 (01) :9-19
[7]   Global incidences of out-of-hospital cardiac arrest and survival rates: Systematic review of 67 prospective studies [J].
Berdowski, Jocelyn ;
Berg, Robert A. ;
Tijssen, Jan G. P. ;
Koster, Rudolph W. .
RESUSCITATION, 2010, 81 (11) :1479-1487
[8]   Expedited transport versus continued on-scene resuscitation for refractory out-of-hospital cardiac arrest: A systematic review and meta-analysis [J].
Burns, Brian ;
Hsu, Henry R. ;
Keech, Anthony ;
Huang, Yating ;
Tian, David H. ;
Coggins, Andrew ;
Dennis, Mark .
RESUSCITATION PLUS, 2023, 16
[9]   Evaluation of Socioeconomic Position and Survival After Out-of-Hospital Cardiac Arrest in Korea Using Structural Equation Modeling [J].
Choi, Dong Hyun ;
Ro, Young Sun ;
Park, Jeong Ho ;
Lee, Sun Young ;
Hong, Ki Jeong ;
Song, Kyoung Jun ;
Shin, Sang Do .
JAMA NETWORK OPEN, 2023, 6 (05) :E2312722
[10]   Association between Case Volumes of Extracorporeal Life Support and Clinical Outcome in Out-of-Hospital Cardiac Arrest [J].
Choi, Seulki ;
Hong, Ki Jeong ;
Lee, Stephen Gyung Won ;
Kim, Tae Han ;
Shin, Sang Do ;
Song, Kyoung Jun ;
Ro, Young Sun ;
Jeong, Joo ;
Park, Jeong Ho ;
Lee, Gyeong Min .
PREHOSPITAL EMERGENCY CARE, 2024, 28 (01) :139-146