Construction of a sunflower-like S-scheme WO3/ZnIn2S4 heterojunction with spatial charge transfer for enhanced photocatalytic CO2 reduction

被引:0
作者
Xia, Yuzhou [1 ,2 ]
Xiao, Jilong [3 ]
Zhang, Jiacheng [1 ]
Huang, Renkun [1 ]
Huang, Xiaohui [1 ]
Yan, Guiyang [1 ]
Zheng, Liuping [4 ]
机构
[1] Ningde Normal Univ, Fujian Prov Key Lab Featured Biochem & Chem Mat, Ningde 352100, Fujian, Peoples R China
[2] Xiamen Ocean Vocat Coll, Xiamen Key Lab Intelligent Fishery, Xiamen 361100, Fujian, Peoples R China
[3] Fuzhou Univ, Coll Chem, Fuzhou 350116, Fujian, Peoples R China
[4] Fujian Normal Univ, Coll Chem & Mat Sci, Fuzhou 350007, Peoples R China
基金
中国国家自然科学基金;
关键词
WO3; Sunflower-like structure; S-scheme heterojunction; Photocatalytic CO2 reduction; VACANCIES;
D O I
10.1016/j.fuel.2024.133779
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The construction of step-scheme (S-scheme) heterojunction has become an effective strategy for enhancing photocatalytic CO2 reduction. In this study, a sunflower-like S-scheme WO3/ZnIn2S4 heterostructure is fabricated through the in-situ growth of ZnIn2S4 nanosheets on WO3 hollow sphere, aimed at improving selective CO2 reduction. The constructed embedding configuration, featuring a WO3 hollow sphere core and an outer layer of ZnIn2S4 nanosheet, increases the contact interface and establishes a significant built-in electric field, thereby promoting the migration and separation of photogenerated carriers. The confined internal cavity of the threedimensional (3D) sunflower-like architecture aids in limiting the free diffusion of CO2, and enriching CO2 molecules at the surface of the photocatalyst, consequently enhancing reaction kinetics. Moreover, S vacancies on ZnIn2S4 nanosheets promote the chemisorption and activation of CO2. As a result, the optimized evolution rates for CH4 and CO of 58.7 mu mol g-1h- 1 and 51.3 mu mol g-1h- 1, respectively, are achieved for WO3/ZnIn2S4 heterojunction. The corresponding electron selectivity for CH4 reaches 82.1 %, which is 13 and 1.5 times higher than those of bare WO3 and ZnIn2S4, respectively. This provides valuable insights into the design of muti-functionalized S-scheme heterojunction photocatalysts.
引用
收藏
页数:10
相关论文
共 55 条
  • [1] In Situ Grown Monolayer N-Doped Graphene on CdS Hollow Spheres with Seamless Contact for Photocatalytic CO2 Reduction
    Bie, Chuanbiao
    Zhu, Bicheng
    Xu, Feiyan
    Zhang, Liuyang
    Yu, Jiaguo
    [J]. ADVANCED MATERIALS, 2019, 31 (42)
  • [2] S-scheme heterojunction of crystalline carbon nitride nanosheets and ultrafine WO3 nanoparticles for photocatalytic CO2 reduction
    Chen, Gongjie
    Zhou, Ziruo
    Li, Bifang
    Lin, Xiahui
    Yang, Can
    Fang, Yuanxing
    Lin, Wei
    Hou, Yidong
    Zhang, Guigang
    Wang, Sibo
    [J]. JOURNAL OF ENVIRONMENTAL SCIENCES, 2024, 140 : 103 - 112
  • [3] Synergy of Oxygen Vacancies and Acid Sites on N-Doped WO3 Nanobelts for Efficient C-C Coupling Synthesis of Benzoin Isopropyl Ether
    Chen, Qifeng
    Gao, Guoming
    Fan, Huailin
    Zheng, Jie
    Ma, Lulu
    Ding, Yanyu
    Fang, Yanfen
    Duan, Ran
    Cao, Xiaofeng
    Guo, Yanchuan
    Ma, Dongge
    Hu, Xun
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (03) : 4725 - 4738
  • [4] Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2
    Das, Sonali
    Perez-Ramirez, Javier
    Gong, Jinlong
    Dewangan, Nikita
    Hidajat, Kus
    Gates, Bruce C.
    Kawi, Sibudjing
    [J]. CHEMICAL SOCIETY REVIEWS, 2020, 49 (10) : 2937 - 3004
  • [5] Built-in electric field intensified by photothermoelectric effect drives charge separation over Z-scheme 3D/2D In 2 Se 3 /PCN heterojunction for high-efficiency photocatalytic CO 2 reduction
    Dong, Hongjun
    Tong, Lei
    Zhang, Pingfan
    Zhu, Daqiang
    Jiang, Jizhou
    Li, Chunmei
    [J]. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2024, 179 : 251 - 261
  • [6] Fabrication of Ultrathin Two-Dimensional/Two-Dimensional MoS2/ZnIn2S4 Hybrid Nanosheets for Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution
    Fang, Haomin
    Cai, Jiajia
    Li, Haijin
    Wang, Jianmin
    Li, Yongtao
    Zhou, Wei
    Mao, Keke
    Xu, Qinfeng
    [J]. ACS APPLIED ENERGY MATERIALS, 2022, : 8232 - 8240
  • [7] Atomically Contacted Cs3Bi2Br9 QDs@UiO-66 Composite for Photocatalytic CO2 Reduction
    Fang, Zhaohui
    Yue, Xiaoyang
    Xiang, Quanjun
    [J]. SMALL, 2024, 20 (34)
  • [8] Enhanced support effects in single-atom copper-incorporated carbon nitride for photocatalytic suzuki cross-coupling reactions
    Han, Chenhui
    Qi, Ruijuan
    Sun, Ruolun
    Fan, Kaicai
    Johannessen, Bernt
    Qi, Dong-Chen
    Cao, Shaowen
    Xu, Jingsan
    [J]. APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2023, 320
  • [9] Anomalous photogalvanic effect of circularly polarized light incident on the two-dimensional electron gas in AlxGa1-xN/GaN heterostructures at room temperature
    He, X. W.
    Shen, B.
    Chen, Y. H.
    Zhang, Q.
    Han, K.
    Yin, C. M.
    Tang, N.
    Xu, F. J.
    Tang, C. G.
    Yang, Z. J.
    Qin, Z. X.
    Zhang, G. Y.
    Wang, Z. G.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (14)
  • [10] Quantitative Evaluation of Carrier Dynamics in Full-Spectrum Responsive Metallic ZnIn2S4 with Indium Vacancies for Boosting Photocatalytic CO2 Reduction
    He, Yiqiang
    Chen, Cailing
    Liu, Yuxin
    Yang, Yilin
    Li, Chunguang
    Shi, Zhan
    Han, Yu
    Feng, Shouhua
    [J]. NANO LETTERS, 2022, 22 (12) : 4970 - 4978