Two-dimensional shock propagation and Mach stem formation induced by a laser-produced annular plasma

被引:0
作者
Veloso, Felipe [1 ,2 ]
Rosales, Vicente [1 ]
Favre, Mario [1 ,2 ]
Valenzuela, Julio [1 ]
机构
[1] Pontificia Univ Catolica Chile, Inst Fis, Santiago 7820436, Chile
[2] Pontificia Univ Catolica Chile, Ctr Invest Nanotecnol & Mat Avanzados CIEN UC, Santiago 7820436, Chile
关键词
SPECTROSCOPY; WAVES;
D O I
10.1103/PhysRevE.110.065210
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We have experimentally studied the formation of shock waves in a laser-induced annular configuration. By locating an aluminum target in the focal plane of a 109 W/cm2 laser, an annular plasma is formed that acts as a piston for a shock wave in a background gas composed by either argon or nitrogen. According to shock wave dynamics, the annular shock follows a two-dimensional propagation profile that is attributed to the boundary conditions of the piston. In addition, we observe the formation of a Mach stem at the center of the configuration, at a position and timing predictable by the adiabatic index of the background gas and shock wave profile. This controlled laboratory setting for producing Mach stems can be used as a benchmark platform for testing conjectures on the observations of clumpy features in astrophysical objects. Moreover, the observed Mach stem propagates as a one-dimensional shock wave given the boundary conditions imposed by the annular configuration.
引用
收藏
页数:10
相关论文
共 37 条
[1]  
Drake R. P., High-Energy-Density Physics: Fundamentals, Inertial Fusion and Experimental Astrophysics, (2006)
[2]  
Betti R., Hurricane O. A., Inertial-confinement fusion with lasers, Nat. Phys, 12, (2016)
[3]  
Zylstra A. B., Burning plasma achieved in inertial fusion, Nature (London), 601, (2022)
[4]  
Hartigan P., Frank A., Foster J. M., Wilde B. H., Douglas M., Rosen P. A., Coker R. F., Blue B. E., Hansen J. F., Fluid dynamics of stellar jets in real time: Third epoch Hubble Space Telescope images of HH 1, HH 34, AND HH 47, Astrophys. J, 736, (2011)
[5]  
del Valle M. V., Araudo A., Suzuki-Vidal F., Adiabatic-radiative shock systems in YSO jets and novae outflows, Astron. Astrophys, 660, (2022)
[6]  
Hansen E. C., Frank A., Hartigan P., Lebedev S. V., The shock dynamics of heterogeneous YSO Jets: 3D simulations meet multi-epoch observations, Astrophys. J, 837, (2017)
[7]  
Hansen E. C., Frank A., Hartigan P., Yirak K., Numerical simulations of Mach stem formation via intersecting bow shocks, High Energy Density Phys, 17, (2015)
[8]  
Hartigan P., Foster J., Frank A., Hansen E., Yirak K., Liao A. S., Graham P., Wilde B., Blue B., Martinez D., Rosen P., Farley D., Paguio R., When shock waves collide, Astrophys. J, 823, (2016)
[9]  
Yirak K., Foster J. M., Hartigan P., Wilde B. H., Douglas M. R., Paguio R., Blue B. E., Martinez D., Farley D., Rosen P. A., Frank A., Mach stem hysteresis: Experiments addressing a novel explanation of clumpy astrophysical jet emission, High Energy Density Phys, 9, (2013)
[10]  
Suzuki-Vidal F., Lebedev S. V., Krishnan M., Skidmore J., Swadling G. F., Bocchi M., Harvey-Thompson A. J., Patankar S., Burdiak G. C., de Grouchy P., Pickworth L., Stafford S. J. P., Suttle L., Bennett M., Bland S. N., Chittenden J. P., Hall G. N., Khoory E., Smith R. A., Ciardi A., Frank A., Madden R. E., Wilson-Elliot K., Coleman P., Interaction of radiatively cooled plasma jets with neutral gases for laboratory astrophysics studies, High Energy Density Phys, 9, (2013)