Stability Dependence of the Turbulent Dissipation Rate in the Convective Atmospheric Boundary Layer

被引:1
|
作者
Lv, Yanmin [1 ]
Munoz-Esparza, Domingo [2 ]
Chen, Xunlai [3 ,4 ]
Zhang, Chunsheng [5 ]
Luo, Ming [5 ]
Wang, Rui [3 ,4 ]
Zhou, Bowen [1 ]
机构
[1] Nanjing Univ, Sch Atmospher Sci, Key Lab Mesoscale Severe Weather, Minist Educ, Nanjing, Peoples R China
[2] Natl Ctr Atmospher Res, Boulder, CO USA
[3] Shenzhen Key Lab Severe Weather South China, Shenzhen, Peoples R China
[4] Shenzhen Meteorol Bur, Shenzhen, Peoples R China
[5] Shenzhen Natl Climate Observ, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
PREDICTION SYSTEM ARPS; KINETIC-ENERGY MODEL; SONIC ANEMOMETER; DOPPLER LIDAR; SURFACE-LAYER; WIND; PARAMETERIZATION; VELOCITY; FIELD; REPRESENTATION;
D O I
10.1029/2023GL103326
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Turbulent dissipation rate (epsilon) is a crucial parameter in turbulence theory, and an essential component of higher-order planetary boundary layer schemes for numerical weather prediction and climate models. It is most often modeled diagnostically based on the dissipation scaling epsilon proportional to e(3/2)/L, where e and L are the turbulence kinetic energy (TKE) and the size of the largest turbulent eddies, respectively. Utilizing three-month-long vertically-extended observations accompanied by high resolution large-eddy simulations, scaling-based epsilon-models are evaluated, focusing on their stability dependence under daytime convective conditions. The analysis uncovers biases in the parameterized epsilon profiles that cannot be corrected through tuning of model constants. The biases are attributed to the limited and even opposing stability dependence of the modeled dissipation length. Close examination reveals violation of the dissipation scaling by the inclusion of TKE associated with organized convection. A self-similar dissipation length is obtained when only the isotropic component of TKE is considered.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] TURBULENT ENERGY DISSIPATION IN ATMOSPHERIC BOUNDARY LAYER
    VOLKOVIT.ZI
    IVANOV, VN
    IZVESTIYA AKADEMII NAUK SSSR FIZIKA ATMOSFERY I OKEANA, 1970, 6 (05): : 435 - &
  • [2] Measurements of turbulent energy dissipation rate with a CW Doppler lidar in the atmospheric boundary layer
    Banakh, VA
    Smalikho, IN
    Köpp, F
    Werner, C
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 1999, 16 (08) : 1044 - 1061
  • [3] TURBULENT ENERGY-DISSIPATION RATE IN UNSTABLY STRATIFIED ATMOSPHERIC BOUNDARY-LAYER
    KUKHARETS, VP
    TSVANG, LR
    IZVESTIYA AKADEMII NAUK SSSR FIZIKA ATMOSFERY I OKEANA, 1977, 13 (06): : 620 - 628
  • [4] Turbulent electric current in the marine convective atmospheric boundary layer
    Anisimov, S. V.
    Galichenko, S. V.
    Prokhorchuk, A. A.
    Aphinogenov, K. V.
    Kozmina, A. S.
    ATMOSPHERIC RESEARCH, 2019, 228 : 86 - 94
  • [5] Resolution Dependence of Turbulent Structures in Convective Boundary Layer Simulations
    Bopape, Mary-Jane M.
    Plant, Robert S.
    Coceal, Omduth
    ATMOSPHERE, 2020, 11 (09)
  • [6] A model for turbulent dissipation rate in a constant pressure boundary layer
    J Dey
    P Phani Kumar
    Sādhanā, 2016, 41 : 435 - 439
  • [7] A model for turbulent dissipation rate in a constant pressure boundary layer
    Dey, J.
    Kumar, P. Phani
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2016, 41 (04): : 435 - 439
  • [8] Observed Turbulent Dissipation Rate in a Landfalling Tropical Cyclone Boundary Layer
    Fang, Qingguo
    Chu, Kekuan
    Zhou, Bowen
    Chen, Xunlai
    Peng, Zhen
    Zhang, Chunsheng
    Luo, Ming
    Zhao, Chunyang
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 2023, 80 (07) : 1739 - 1754
  • [9] Convective scaling of the average dissipation rate of temperature variance in the atmospheric surface layer
    Kiely, G
    Albertson, JD
    Parlange, MB
    Eichinger, WE
    BOUNDARY-LAYER METEOROLOGY, 1996, 77 (3-4) : 267 - 284
  • [10] Low-frequency fluctuations of turbulent energy dissipation in the atmospheric boundary layer
    Byzova, NL
    Vaisberg, BS
    Volnistova, LP
    Ivanov, VN
    IZVESTIYA AKADEMII NAUK FIZIKA ATMOSFERY I OKEANA, 1997, 33 (06): : 765 - 770