Generalized Baskakov-Szász type operators

被引:43
作者
Agrawal, P.N. [1 ]
Gupta, Vijay [2 ]
Sathish Kumar, A. [1 ]
Kajla, Arun [1 ]
机构
[1] Department of Mathematics, Indian Institute of Technology Roorkee
[2] Department of Mathematics, Netaji Subhas Institute of Technology, Dwarka
关键词
Asymptotic formula; Baskakov-Szász operators; Bounded variation; Modulus of continuity; Simultaneous approximation; Statistical convergence;
D O I
10.1016/j.amc.2014.03.084
中图分类号
O24 [计算数学];
学科分类号
070102 ;
摘要
In the present paper, we introduce generalized Baskakov-Szász type operators and study some approximation properties of these operators e.g., rate of convergence in ordinary and simultaneous approximation, statistical convergence and the estimate of the rate of convergence for absolutely continuous functions having a derivative coinciding a.e. with a function of bounded variation. © 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:311 / 324
页数:13
相关论文
共 21 条
[1]  
Abel U., Gupta V., Ivan M., The complete asymptotic expansion for Baskakov Szász Durrmeyer operators, Ann. Tiberiu Popoviciu Itinerant Semin. Funct. Equ. Approx. Convexity, 1, pp. 3-15, (2003)
[2]  
Acar T., Gupta V., Aral A., Rate of convergence for generalized Szász operators, Bull. Math. Sci., 1, 1, pp. 99-113, (2011)
[3]  
Devore R.A., Lorentz G.G., Constructive Approximation, (1993)
[4]  
Duman O., Orhan C., Statistical approximation by positive linear operators, Studia Mathematica, 161, 2, pp. 187-197, (2004)
[5]  
Erencin A., Durrmeyer type modification of generalized Baskakov operators, Appl. Math. Comput., 218, 3, pp. 4384-4390, (2011)
[6]  
Gadjiev A.D., Orhan C., Some approximation theorems via statistical convergence, Rocky Mt. J. Math., 32, 1, pp. 129-138, (2002)
[7]  
Gadjiev A.D., On P.P. Korovkin type theorems, Math. Zametki, 20, 5, pp. 781-786, (1976)
[8]  
Gupta V., Agarwal R.P., Convergence Estimates in Approximation Theory, (2014)
[9]  
Gupta V., Agrawal P.N., An estimate of the rate of convergence for modified Szász-Mirakyan operators of function of bounded variation, Publ. Inst. Math., 49, 69, pp. 97-103, (1991)
[10]  
Gupta V., Agrawal P.N., Gairola A.R., On the integrated Baskakov type operators, Appl. Math. Comput., 213, 2, pp. 419-425, (2009)