Classification and analysis of simple pendulum using artificial neural network approach

被引:0
|
作者
Wadhwa, Adya [1 ]
Wadhwa, Ajay [2 ]
机构
[1] GGS Indraprastha Univ EDC, Univ Sch Automat & Robot, AI & ML, New Delhi, India
[2] Univ Delhi, SGTB Khalsa Coll, Dept Phys, New Delhi, India
关键词
simple pendulum; neural network; machine learning; damping coefficient; SGD algorithm;
D O I
10.1088/1361-6404/ad79cb
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
We describe an artificial neural network (ANN) for analyzing damped oscillations in a simple pendulum system by using a machine learning (ML) algorithm. We have first shown how to construct a simple ANN consisting of three layers-input, hidden and output, with each layer being composed of neurons representing a relevant feature of the oscillating pendulum. The train and test datasets for the ANN have been taken from the experimental data collected by using the methodology of a previously communicated work. A ML optimization algorithm called stochastic gradient descent has been employed in the neural network to predict the type of pendulum according to the values of the mass, size and damping coefficient of the pendulum.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] An Artificial Neural Network for Hand Movement Classification using Surface Electromyography
    Viana, Paulo L.
    Fujii, Victoria S.
    Lima, Larissa M.
    Ouriques, Gabriel L.
    Oliveira, Gustavo C.
    Varoto, Renato
    Cliquet Jr, Alberto
    BIOSIGNALS: PROCEEDINGS OF THE 12TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, VOL 4: BIOSIGNALS, 2019, : 185 - 192
  • [22] An approach to measure the densities of solids using an artificial neural network
    Neelamegam, P.
    Rajendran, A.
    INSTRUMENTATION SCIENCE & TECHNOLOGY, 2007, 35 (02) : 189 - 199
  • [23] Electric load analysis using an artificial neural network
    Cavallaro, F
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2005, 29 (05) : 377 - 392
  • [24] VHDL modeling of EMG signal classification using artificial neural network
    Ahsan, M. R., 1600, Asian Network for Scientific Information (12): : 244 - 253
  • [25] A neural network approach to the analysis and classification of human craniofacial growth
    Lux, CJ
    Stellzig, A
    Volz, D
    Jäger, W
    Richardson, A
    Komposch, G
    GROWTH DEVELOPMENT AND AGING, 1998, 62 (03) : 95 - 106
  • [26] Classification of Radar Clutters With Artificial Neural Network
    Darzikolaei, Mohammad Akhondi
    Ebrahimzade, AtaAllah
    Gholami, Elahe
    2015 2ND INTERNATIONAL CONFERENCE ON KNOWLEDGE-BASED ENGINEERING AND INNOVATION (KBEI), 2015, : 576 - 580
  • [27] Simple and Computationally Efficient Movement Classification Approach for EMG-controlled Prosthetic Hand: ANFIS vs. Artificial Neural Network
    Fariman, Hessam Jahani
    Ahmad, Siti A.
    Marhaban, M. Hamiruce
    Ghasab, M. Ali Jan
    Chappell, Paul H.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2015, 21 (04) : 559 - 573
  • [28] Classification of power quality problems using wavelet based artificial neural network
    Chandel, A. K.
    Guleria, G.
    Chandel, R.
    2008 IEEE/PES TRANSMISSION & DISTRIBUTION CONFERENCE & EXPOSITION, VOLS 1-3, 2008, : 689 - +
  • [29] Prediction of banana quality attributes and ripeness classification using artificial neural network
    Adebayo, S. E.
    Hashim, N.
    Abdan, K.
    Hanafi, M.
    Zude-Sasse, M.
    III INTERNATIONAL CONFERENCE ON AGRICULTURAL AND FOOD ENGINEERING, 2017, 1152 : 335 - 343
  • [30] Spark based classification of microarray data using scalable artificial neural network
    Kumar, Mukesh
    Ray, Ransingh B.
    Rath, Santanu K.
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2017, 19 (04) : 312 - 339