Investigating self-supervised image denoising with denaturation

被引:0
|
作者
Waida, Hiroki [1 ]
Yamazaki, Kimihiro [2 ]
Tokuhisa, Atsushi [3 ]
Wada, Mutsuyo [2 ]
Wada, Yuichiro [2 ,4 ]
机构
[1] Inst Sci Tokyo, Dept Math & Comp Sci, 2-12-1 Ookayama,Meguro Ku, Tokyo 1528550, Japan
[2] Fujitsu Ltd, 4-1-1 Kamikodanaka,Nakahara Ku, Kawasaki, Kanagawa 2118588, Japan
[3] RIKEN Ctr Computat Sci, 7-1-26 Minatojima-minami-machi,Chuo Ku, Kobe, Hyogo 6500047, Japan
[4] RIKEN Ctr Adv Intelligence Project, Nihonbashi 1 Chome Mitsui Bldg,15th floor,1-4-1 Ni, Tokyo 1030027, Japan
关键词
Self-supervised image denoising; Theory on denoising; CRYO-EM;
D O I
10.1016/j.neunet.2024.106966
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Self-supervised learning for image denoising problems in the presence of denaturation for noisy data is a crucial approach in machine learning. However, theoretical understanding of the performance of the approach that uses denatured data is lacking. To provide better understanding of the approach, in this paper, we analyze a self-supervised denoising algorithm that uses denatured data in depth through theoretical analysis and numerical experiments. Through the theoretical analysis, we discuss that the algorithm finds desired solutions to the optimization problem with the population risk, while the guarantee for the empirical risk depends on the hardness of the denoising task in terms of denaturation levels. We also conduct several experiments to investigate the performance of an extended algorithm in practice. The results indicate that the algorithm training with denatured images works, and the empirical performance aligns with the theoretical results. These results suggest several insights for further improvement of self-supervised image denoising that uses denatured data in future directions.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Leveraging Self-supervised Denoising for Image Segmentation
    Prakash, Mangal
    Buchholz, Tim-Oliver
    Lalit, Manan
    Tomancak, Pavel
    Jug, Florian
    Krull, Alexander
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 428 - 432
  • [2] A self-supervised network for image denoising and watermark removal
    Tian, Chunwei
    Xiao, Jingyu
    Zhang, Bob
    Zuo, Wangmeng
    Zhang, Yudong
    Lin, Chia -Wen
    NEURAL NETWORKS, 2024, 174
  • [3] Self-Supervised Joint Learning for pCLE Image Denoising
    Yang, Kun
    Zhang, Haojie
    Qiu, Yufei
    Zhai, Tong
    Zhang, Zhiguo
    SENSORS, 2024, 24 (09)
  • [4] Image denoising for fluorescence microscopy by supervised to self-supervised transfer learning
    Wang, Yina
    Pinkard, Henry
    Khwaja, Emaad
    Zhou, Shuqin
    Waller, Laura
    Huang, Bo
    OPTICS EXPRESS, 2021, 29 (25) : 41303 - 41312
  • [5] Self-supervised PET Denoising
    Yie, Si Young
    Kang, Seung Kwan
    Hwang, Donghwi
    Lee, Jae Sung
    NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2020, 54 (06) : 299 - 304
  • [6] A self-supervised CNN for image denoising with self-similarity prior
    Fang, Wenqian
    Li, Hongwei
    2022 16TH IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP2022), VOL 1, 2022, : 66 - 69
  • [7] Self-supervised PET Denoising
    Si Young Yie
    Seung Kwan Kang
    Donghwi Hwang
    Jae Sung Lee
    Nuclear Medicine and Molecular Imaging, 2020, 54 : 299 - 304
  • [8] Spatial redundancy transformer for self-supervised fluorescence image denoising
    Li, Xinyang
    Hu, Xiaowan
    Chen, Xingye
    Fan, Jiaqi
    Zhao, Zhifeng
    Wu, Jiamin
    Wang, Haoqian
    Dai, Qionghai
    NATURE COMPUTATIONAL SCIENCE, 2023, 3 (12): : 1067 - +
  • [9] Spatial redundancy transformer for self-supervised fluorescence image denoising
    Xinyang Li
    Xiaowan Hu
    Xingye Chen
    Jiaqi Fan
    Zhifeng Zhao
    Jiamin Wu
    Haoqian Wang
    Qionghai Dai
    Nature Computational Science, 2023, 3 : 1067 - 1080
  • [10] NVST Image Denoising Based on Self-Supervised Deep Learning
    Lu Xianwei
    Liu Hui
    Shang Zhenhong
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (06)