Solving the two-dimensional time-dependent Schrödinger equation using the Sinc collocation method and double exponential transformations

被引:1
作者
Elgharbi, S. [1 ]
Essaouini, M. [1 ,2 ]
Abouzaid, B. [1 ,3 ]
Safouhi, H. [4 ]
机构
[1] Mohammed V Univ, Fac Sci, Lab Math Comp Sci & Applicat Secur Informat, Rabat, Morocco
[2] Chouaib Doukkali Univ, Fac Sci, Dept Math, El Jadida, Morocco
[3] Chouaib Doukkali Univ, Natl Sch Appl Sci, Lab Engn Sci Energy, El Jadida, Morocco
[4] Univ Alberta, Campus St Jean,8406 91 St, Edmonton, AB T6C 4G9, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Two-dimensional time dependent Schr & ouml; dinger; equation; Sinc collocation method; Double exponential transformation; BOUNDARY-VALUE PROBLEM; SCHRODINGER-EQUATION; NUMERICAL-SOLUTION; GALERKIN METHOD; EIGENVALUES; SCHEMES; COMPUTATION;
D O I
10.1016/j.apnum.2024.04.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Over the last four decades, Sinc methods have occupied an important place in numerical analysis due to their simplicity and great performance. An incorporation of the Sinc collocation method with double exponential transformation is used to solve the two-dimensional time dependent Schr & ouml;dinger equation. Numerical comparison between the double exponential and single exponential approaches is made to illustrate the superiority of the double exponential Sinc method.
引用
收藏
页码:222 / 231
页数:10
相关论文
共 31 条
[1]   Application of the Sinc method to a dynamic elasto-plastic problem [J].
Abdella, K. ;
Yu, X. ;
Kucuk, I. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 223 (02) :626-645
[2]   Numerical schemes for the simulation of the two-dimensional Schrodinger equation using non-reflecting boundary conditions [J].
Antoine, X ;
Besse, C ;
Mouysset, V .
MATHEMATICS OF COMPUTATION, 2004, 73 (248) :1779-1799
[3]   On the Computation of Eigenvalues of the Anharmonic Coulombic Potential [J].
Cassidy, Tyler ;
Gaudreau, Philippe ;
Safouhi, Hassan .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2018, 56 (02) :477-492
[4]   On the Lambert W function [J].
Corless, RM ;
Gonnet, GH ;
Hare, DEG ;
Jeffrey, DJ ;
Knuth, DE .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1996, 5 (04) :329-359
[5]   A numerical method for two-dimensional Schrodinger equation using collocation and radial basis functions [J].
Dehghan, Mehdi ;
Shokri, Ali .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 54 (01) :136-146
[6]   The Sinc-collocation and Sinc-Galerkin methods for solving the two-dimensional Schrodinger equation with nonhomogeneous boundary conditions [J].
Dehghan, Mehdi ;
Emami-Naeini, Faezeh .
APPLIED MATHEMATICAL MODELLING, 2013, 37 (22) :9379-9397
[7]   SINC FUNCTION COMPUTATION OF THE EIGENVALUES OF STURM-LIOUVILLE PROBLEMS [J].
EGGERT, N ;
JARRATT, M ;
LUND, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1987, 69 (01) :209-229
[8]   Double exponential Sinc numerical methods for the two-dimensional time-independent Schrodinger equation [J].
Elgharbi, S. ;
Essaouini, M. ;
Abouzaid, B. ;
El Hajji, S. ;
Safouhi, H. .
MOLECULAR PHYSICS, 2021, 119 (10)
[9]   Computation of energy eigenvalues of the anharmonic Coulombic potential with irregular singularities [J].
Essaouini, M. ;
Abouzaid, B. ;
Gaudreau, P. ;
Safouhi, H. .
NUMERICAL ALGORITHMS, 2020, 84 (04) :1397-1409
[10]   The double exponential sinc collocation method for singular Sturm-Liouville problems [J].
Gaudreau, P. ;
Slevinsky, R. ;
Safouhi, H. .
JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (04)