Efficient photocatalytic CO2 reduction and H2 evolution on nitrogen vacancies enriched g-C3N4 treated by formic acid

被引:1
|
作者
Yang, Penghui [1 ]
Li, Shurong [1 ]
Gong, Yuyang [1 ]
Li, Minjiao [2 ]
Zhong, Junbo [1 ]
Ma, Dongmei [1 ]
机构
[1] Sichuan Univ Sci & Engn, Key Lab Green Catalysis Higher Educ Inst Sichuan, Coll Chem & Environm Engn, Zigong 643000, Peoples R China
[2] Sichuan Univ Sci & Engn, Coll Chem Engn, Zigong 643000, Peoples R China
关键词
Nitrogen vacancies; Photocatalytic CO2 reduction; Photocatalytic H2 production;
D O I
10.1016/j.ijhydene.2024.12.362
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Introducing vacancies into graphitic carbon nitride (g-C3N4) has emerged as a potent strategy to augment its photocatalytic performance. However, introducing vacancies on g-C3N4 via an efficient and environmentally friendly approach still remains a significant challenge. In this work, g-C3N4 photocatalysts enriched with nitrogen vacancies were successfully prepared by treating g-C3N4 with formic acid solution at room temperature. Incorporation of nitrogen vacancies significantly suppresses the recombination of e- /h+ and facilitates the utilization of electrons in photocatalytic reactions, thereby improving the photocatalytic efficiency. In addition, nitrogen vacancies provide abundant active sites and effective adsorption centers for CO2 molecules on the photocatalysts, further promoting the photoreduction process of CO2. Among them, the 15CN sample treated by 15 mL of formic acid exhibits the best photocatalytic performance. Under the irradiation of a 300 W xenon lamp, the conversion rate of CO2 to CO on the 15CN sample reaches 3.5 mu mol g- 1 h- 1, representing a 3.73-fold enhancement compared to that on the reference g-C3N4. In situ diffuse reflectance Fourier-transform infrared spectroscopy (DRIFTS) was utilized to investigate the process of CO2 conversion to CO on the surface of photocatalysts. In addition, the multifunctionality of the photocatalysts was further explored through photocatalytic hydrogen evolution (H2) experiments. Under a 300 W xenon lamp irradiation, photocatalytic H2 production rate on the 15CN sample reaches 1170.44 mu mol g- 1 h- 1, which is 1.24 times higher than that on the reference sample. This work provides a feasible strategy to enhance the photocatalytic performance of g-C3N4 using a mild approach for environmental purification and energy conversion applications.
引用
收藏
页码:365 / 377
页数:13
相关论文
共 50 条
  • [11] Boosting the photocatalytic CO2 reduction activity of g-C3N4 by acid modification
    Li, Zhou
    Ao, Junlang
    Wang, Zhi
    Huang, Zibin
    Xu, Zhihua
    Wu, Xiaofeng
    Cheng, Zhenmin
    Lv, Kangle
    SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 338
  • [12] Metal-free four-in-one modification of g-C3N4 for superior photocatalytic CO2 reduction and H2 evolution
    Hussien, Mahmoud Kamal
    Sabbah, Amr
    Qorbani, Mohammad
    Elsayed, Mohamed Hammad
    Raghunath, Putikam
    Lin, Tsai-Yu
    Quadir, Shaham
    Wang, Hong-Yi
    Wu, Heng-Liang
    Tzou, Der-Lii M.
    Lin, Ming-Chang
    Chung, Po-Wen
    Chou, Ho-Hsiu
    Chen, Li-Chyong
    Chen, Kuei-Hsien
    CHEMICAL ENGINEERING JOURNAL, 2022, 430
  • [13] Metal-free four-in-one modification of g-C3N4 for superior photocatalytic CO2 reduction and H2 evolution
    Kamal Hussien, Mahmoud
    Sabbah, Amr
    Qorbani, Mohammad
    Hammad Elsayed, Mohamed
    Raghunath, Putikam
    Lin, Tsai-Yu
    Quadir, Shaham
    Wang, Hong-Yi
    Wu, Heng-Liang
    Tzou, Der-Lii M.
    Lin, Ming-Chang
    Chung, Po-Wen
    Chou, Ho-Hsiu
    Chen, Li-Chyong
    Chen, Kuei-Hsien
    Chemical Engineering Journal, 2022, 430
  • [14] Phosphorylation of g-C3N4 for enhanced photocatalytic CO2 reduction
    Ye, Liqun
    Wu, Dan
    Chu, Ka Him
    Wang, Bo
    Xie, Haiquan
    Yip, Ho Yin
    Wong, Po Keung
    CHEMICAL ENGINEERING JOURNAL, 2016, 304 : 376 - 383
  • [15] Heterostructures based on g-C3N4 for the photocatalytic CO2 reduction
    Alekseev, Roman F.
    Saraev, Andrey A.
    Kurenkova, Anna Yu.
    Kozlova, Ekaterina A.
    RUSSIAN CHEMICAL REVIEWS, 2024, 93 (05)
  • [16] Nanosheet-Stacked g-C3N4 Tubes with Carbon Vacancies for Enhanced Photocatalytic H2 Evolution
    Lu, Jin
    Li, Zhaoqian
    Wu, Bo
    Jiang, Zhiqiang
    Pei, Chonghua
    ACS APPLIED NANO MATERIALS, 2025, 8 (12) : 6133 - 6143
  • [17] Reinforced photocatalytic H2 generation behavior of S-scheme NiO/g-C3N4 heterojunction photocatalysts with enriched nitrogen vacancies
    Li, Youmei
    Zhong, Junbo
    Li, Jianzhang
    OPTICAL MATERIALS, 2023, 135
  • [18] Photocatalytic H2 evolution on graphdiyne/g-C3N4 hybrid nanocomposites
    Xu, Quanlong
    Zhu, Bicheng
    Cheng, Bei
    Yu, Jiaguo
    Zhou, Minghua
    Ho, Wingkei
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 255
  • [19] g-C3N4 Sensitized by an Indoline Dye for Photocatalytic H2 Evolution
    Chen, Yihang
    Liu, Yanfei
    Ma, Zhen
    PROCESSES, 2021, 9 (06)
  • [20] g-C3N4 modified by pyropheophorbide-a for photocatalytic H2 evolution
    Liu, Yanfei
    Ma, Zhen
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2021, 615 (615)