LiDAR-Guided Stereo Matching Using Bayesian Optimization With Gaussian Process Regression

被引:0
作者
Yi, Hao [1 ,2 ,3 ,4 ]
Liu, Bo [1 ,2 ,3 ,4 ]
Zhao, Bin [1 ,2 ,3 ,4 ]
Liu, Enhai [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Natl Key Lab Opt Field Manipulat Sci & Technol, Chengdu 610209, Peoples R China
[2] Chinese Acad Sci, Key Lab Sci & Technol Space Optoelect Precis Measu, Chengdu 610209, Peoples R China
[3] Chinese Acad Sci, Inst Opt & Elect, Chengdu 610209, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Bayesian optimization; belief propagation; data fusion; LiDAR; stereo matching; RESOLUTION;
D O I
10.1109/LGRS.2024.3492175
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
LiDAR-guided stereo matching for high-precision disparity estimation is a very promising task in photogrammetry and remote sensing. Unfortunately, existing methods suffer from the problem that it is difficult to automatically obtain appropriate stereo matching model parameters to ensure satisfactory results. To solve it, this letter proposes a LiDAR-guided stereo matching framework using Bayesian optimization with Gaussian process regression, which aims to automatically infer the stereo matching model parameters by LiDAR data. First, local matching model based on the belief propagation algorithm is designed. Second, the objective function is constructed by minimizing the difference between the local matching results and the LiDAR data. Third, Bayesian optimization with Gaussian process regression is applied to minimize this objective function to infer the model parameters. Finally, experimental results on the GaoFen-7 and UAV Stereo datasets show that the proposed method can effectively infer suitable model parameters from LiDAR data, and our method outperforms the state-of-the-art methods.
引用
收藏
页数:5
相关论文
共 20 条
  • [1] Dense Stereo Matching With Edge-Constrained Penalty Tuning
    Chuang, Tzu-Yi
    Ting, Hao-Wei
    Jaw, Jen-Jer
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (05) : 664 - 668
  • [3] Comparison of 2D and 3D vegetation species mapping in three natural scenarios using UAV-LiDAR point clouds and improved deep learning methods
    Deng, Liwei
    Fu, Bolin
    Wu, Yan
    He, Hongchang
    Sun, Weiwei
    Jia, Mingming
    Deng, Tengfang
    Fan, Donglin
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 125
  • [4] Pavement Defect Detection With Deep Learning: A Comprehensive Survey
    Fan, Lili
    Wang, Dandan
    Wang, Junhao
    Li, Yunjie
    Cao, Yifeng
    Liu, Yi
    Chen, Xiaoming
    Wang, Yutong
    [J]. IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2024, 9 (03): : 4292 - 4311
  • [5] Efficient belief propagation for early vision
    Felzenszwalb, Pedro F.
    Huttenlocher, Daniel P.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2006, 70 (01) : 41 - 54
  • [6] Limitations of high resolution satellite stereo imagery for estimating canopy Check for height in Australian tropical savannas
    Goldbergs, Grigorijs
    Maier, Stefan W.
    Levick, Shaun R.
    Edwards, Andrew
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2019, 75 : 83 - 95
  • [7] HMSM-Net: Hierarchical multi-scale matching network for disparity estimation of high-resolution satellite stereo images
    He, Sheng
    Li, Shenhong
    Jiang, San
    Jiang, Wanshou
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2022, 188 : 314 - 330
  • [8] Deep Depth Completion From Extremely Sparse Data: A Survey
    Hu, Junjie
    Bao, Chenyu
    Ozay, Mete
    Fan, Chenyou
    Gao, Qing
    Liu, Honghai
    Lam, Tin Lun
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (07) : 8244 - 8264
  • [9] Super resolution of laser range data based on image-guided fusion and dense matching
    Huang, Xu
    Qin, Rongjun
    Xiao, Changlin
    Lu, Xiaohu
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 144 : 105 - 118
  • [10] ON FIXED-DOMAIN ASYMPTOTICS, PARAMETER ESTIMATION AND ISOTROPIC GAUSSIAN RANDOM FIELDS WITH MATERN COVARIANCE FUNCTIONS
    Loh, Wei-Liem
    Sun, Saifei
    Wen, Jun
    [J]. ANNALS OF STATISTICS, 2021, 49 (06) : 3127 - 3152