Modeling stationary data by a class of generalized ornstein-uhlenbeck processes: The Gaussian case

被引:0
|
作者
机构
[1] Arratia, Argimiro
[2] Cabaña, Alejandra
[3] Cabaña, Enrique M.
来源
Arratia, Argimiro | 1600年 / Springer Verlag卷 / 8819期
关键词
D O I
暂无
中图分类号
O211 [概率论(几率论、或然率论)];
学科分类号
摘要
The Ornstein-Uhlenbeck (OU) process is a well known continuous– time interpolation of the discrete–time autoregressive process of order one, the AR(1). We propose a generalization of the OU process that resembles the construction of autoregressive processes of higher order p > 1 from the AR(1). The higher order OU processes thus obtained are called Ornstein-Uhlenbeck processes of order p (denoted OU(p)), and constitute a family of parsimonious models able to adjust slowly decaying covariances. We show that the OU(p) processes are contained in the family of autoregressive moving averages of order (p, p − 1), the ARMA (p, p−1), and that their parameters and covariances can be computed efficiently. Experiments on real data show that the empirical autocorrelation for large lags can be well modeled with OU(p) processes with approximately half the number of parameters than ARMA processes. © 2014 Springer International Publishing Switzerland.
引用
收藏
相关论文
共 50 条
  • [1] Modeling Stationary Data by a Class of Generalized Ornstein-Uhlenbeck Processes: The Gaussian Case
    Arratia, Argimiro
    Cabana, Alejandra
    Cabana, Enrique M.
    ADVANCES IN INTELLIGENT DATA ANALYSIS XIII, 2014, 8819 : 13 - 24
  • [2] Generalized Ornstein-Uhlenbeck processes
    Bezuglyy, V.
    Mehlig, B.
    Wilkinson, M.
    Nakamura, K.
    Arvedson, E.
    JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (07)
  • [3] Properties of stationary distributions of a sequence of generalized Ornstein-Uhlenbeck processes
    Lindner, Alexander
    Sato, Ken-iti
    MATHEMATISCHE NACHRICHTEN, 2011, 284 (17-18) : 2225 - 2248
  • [4] Gaussian and hermite Ornstein-Uhlenbeck processes
    Es-Sebaiy, Khalifa
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2023, 41 (02) : 394 - 423
  • [5] On Ornstein-Uhlenbeck driven by Ornstein-Uhlenbeck processes
    Bercu, Bernard
    Proia, Frederic
    Savy, Nicolas
    STATISTICS & PROBABILITY LETTERS, 2014, 85 : 36 - 44
  • [6] Multivariate generalized Ornstein-Uhlenbeck processes
    Behme, Anita
    Lindner, Alexander
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2012, 122 (04) : 1487 - 1518
  • [7] STATIONARY-PROCESSES OF ORNSTEIN-UHLENBECK TYPE
    SATO, K
    YAMAZATO, M
    LECTURE NOTES IN MATHEMATICS, 1983, 1021 : 541 - 551
  • [8] The stationarity of multidimensional generalized Ornstein-Uhlenbeck processes
    Endo, Kotaro
    Matsui, Muneya
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (14) : 2265 - 2272
  • [9] Exact propagator for generalized Ornstein-Uhlenbeck processes
    Mota-Furtado, F.
    O'Mahony, P. F.
    PHYSICAL REVIEW E, 2007, 75 (04):
  • [10] Time irregularity of generalized Ornstein-Uhlenbeck processes
    Brzezniak, Zdzislaw
    Goldys, Ben
    Imkeller, Peter
    Peszat, Szymon
    Priola, Enrico
    Zabczyk, Jerzy
    COMPTES RENDUS MATHEMATIQUE, 2010, 348 (5-6) : 273 - 276