Transfer Contrastive Learning for Raman Spectroscopy Skin Cancer Tissue Classification

被引:0
作者
Wang, Zhiqiang [1 ]
Lin, Yanbin [1 ]
Zhu, Xingquan [1 ]
机构
[1] Florida Atlantic Univ, Dept Elect Engn & Comp Sci, Boca Raton, FL 33431 USA
基金
美国国家科学基金会;
关键词
Contrastive learning; Skin cancer; Transfer learning; Data models; Skin; Feature extraction; Accuracy; contrastive learning; Raman spectroscopy; skin cancer; tissue classification; CELL CARCINOMA;
D O I
10.1109/JBHI.2024.3451950
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Using Raman spectroscopy (RS) signals for skin cancer tissue classification has recently drawn significant attention, because of its non-invasive optical technique, which uses molecular structures and conformations within biological tissue for diagnosis. In reality, RS signals are noisy and unstable for training machine learning models. The scarcity of tissue samples also makes it challenging to learn reliable deep-learning networks for clinical usages. In this paper, we advocate a Transfer Contrasting Learning Paradigm (TCLP) to address the scarcity and noisy characteristics of the RS for skin cancer tissue classification. To overcome the challenge of limited samples, TCLP leverages transfer learning to pre-train deep learning models using RS data from similar domains (but collected from different RS equipments for other tasks). To tackle the noisy nature of the RS signals, TCLP uses contrastive learning to augment RS signals to learn reliable feature representation to represent RS signals for final classification. Experiments and comparisons, including statistical tests, demonstrate that TCLP outperforms existing deep learning baselines for RS signal-based skin cancer tissue classification.
引用
收藏
页码:7332 / 7344
页数:13
相关论文
共 50 条
  • [31] Semi-Supervised Contrastive Learning for Time Series Classification in Healthcare
    Liu, Xiaofeng
    Liu, Zhihong
    Li, Jie
    Zhang, Xiang
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2025, 9 (01): : 318 - 331
  • [32] Two-Stream Networks for Contrastive Learning in Hyperspectral Image Classification
    Xia, Shuxiang
    Zhang, Xiaohua
    Meng, Hongyun
    Fan, Jiaxin
    Jiao, Licheng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 1903 - 1920
  • [33] Hierarchy-aware contrastive learning with late fusion for skin lesion classification
    Hsu, Benny Wei-Yun
    Tseng, Vincent S.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 216
  • [34] Classification of skin cancer using convolutional neural networks analysis of Raman spectra
    Bratchenko, Ivan A.
    Bratchenko, Lyudmila A.
    Khristoforova, Yulia A.
    Moryatov, Alexander A.
    V. Kozlo, Sergey
    Zakharo, Valery P.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 219
  • [35] CLAST: Contrastive Learning for Arbitrary Style Transfer
    Wang, Xinhao
    Wang, Wenjing
    Yang, Shuai
    Liu, Jiaying
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 6761 - 6772
  • [36] From Vibrations to Visions: Raman Spectroscopy's Impact on Skin Cancer Diagnostics
    Delrue, Charlotte
    Speeckaert, Reinhart
    Oyaert, Matthijs
    De Bruyne, Sander
    Speeckaert, Marijn M.
    JOURNAL OF CLINICAL MEDICINE, 2023, 12 (23)
  • [37] Classification of Skin Cancer Lesions Using Explainable Deep Learning
    Rehman, Muhammad Zia Ur
    Ahmed, Fawad
    Alsuhibany, Suliman A.
    Jamal, Sajjad Shaukat
    Ali, Muhammad Zulfiqar
    Ahmad, Jawad
    SENSORS, 2022, 22 (18)
  • [38] A Transfer Learning Approach to Breast Cancer Classification in a Federated Learning Framework
    Tan, Y. Nguyen
    Tinh, Vo Phuc
    Lam, Pham Duc
    Nam, Nguyen Hoang
    Khoa, Tran Anh
    IEEE ACCESS, 2023, 11 : 27462 - 27476
  • [39] LACL: Lesion-Aware Contrastive Learning Framework for Medical Image Classification
    Tang, Yu
    Yang, Gang
    Zhao, Jianchun
    Ding, Dayong
    Wu, Jun
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 966 - 971
  • [40] Negative Samples Mining Matters: Reconsidering Hyperspectral Image Classification With Contrastive Learning
    Liu, Hui
    Huang, Chenjia
    Chen, Ning
    Xie, Tao
    Lu, Mingyue
    Huang, Zhou
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62