Brain shift compensation and neurosurgical image fusion using intraoperative MRI: Current status and future challenges

被引:55
作者
Kuhnt, Daniela [1 ]
Bauer, Miriam H.A. [1 ]
Nimsky, Christopher [1 ]
机构
[1] Department of Neurosurgery, University of Marburg, Marburg
关键词
Brain shift; Functional navigation; Intraoperative magnetic resonance imaging;
D O I
10.1615/CritRevBiomedEng.v40.i3.20
中图分类号
学科分类号
摘要
Navigation systems are commonly used in neurosurgical operating theaters. Generally, they either rely on the use of preoperative or intraoperative image data. Using preoperative image data, the phenomenon of brain shift contributes most to errors, in addition to various other sources of decreased reliability, such as image-related errors or registration inaccuracy. Updating navigation after intraoperative magnetic resonance imaging (iMRI) serves as immediate feedback on the surgical result and furthermore compensates for the effects of brain shift. Together with an integration of functional data in the navigation such as diffusion tensor imaging (DTI)-based fiber tracking or functional MRI, there is evidence that iMRI contributes to maximize extent of resection in glioma surgery with a preservation of neurological function. The following article summarizes the work flow and clinical impact of iMRI and functional navigation, as well as current problems and possible solutions. © 2012 Begell House, Inc.
引用
收藏
页码:175 / 185
页数:10
相关论文
共 75 条
[1]  
Lacroix M., Abi-Said D., Fourney D.R., Gokaslan Z.L., Shi W., DeMonte F., Lang F.F., McCutcheon I.E., Hassenbusch S.J., Holland E., Hess K., Michael C., Miller D., Sawaya R., A multivariate analysis of 416 patients with glioblastoma multiforme: Prognosis, extent of resection, and survival, J Neurosurg., 95, 2, pp. 190-198, (2001)
[2]  
Senft C., Franz K., Blasel S., Oszvald A., Rathert J., Seifert V., Gasser T., Influence of iMRI-guidance on the extent of resection and survival of patients with glioblastoma multiforme, Technol Cancer Res Treat., 9, 4, pp. 339-346, (2010)
[3]  
Stummer W., Pichlmeier U., Meinel T., Wiestler O.D., Zanella F., Reulen H.J., Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: A randomised controlled multicentre phase III trial, Lancet Oncol., 7, 5, pp. 392-401, (2006)
[4]  
Wirtz C.R., Knauth M., Staubert A., Bonsanto M.M., Sartor K., Kunze S., Tronnier V.M., Clinical evaluation and follow-up results for intraoperative magnetic resonance imaging in neurosurgery, Neurosurgery., 46, 5, pp. 1112-1120, (2000)
[5]  
Nimsky C., Ganslandt O., Cerny S., Hastreiter P., Greiner G., Fahlbusch R., Quantification of, visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging, Neurosurgery., 47, 5, pp. 1070-1079, (2000)
[6]  
Hall W.A., Liu H., Martin A.J., Pozza C.H., Maxwell R.E., Truwit C.L., Safety, efficacy, and functionality of high-field strength interventional magnetic resonance imaging for neurosurgery, Neurosurgery., 46, 3, pp. 632-641, (2000)
[7]  
Sutherland G.R., Kaibara T., Louw D., Hoult D.I., Tomanek B., Saunders J., A mobile high-field magnetic resonance system for neurosurgery, J Neurosurg., 91, 5, pp. 804-813, (1999)
[8]  
Spiegel E.A., Wycis H.A.T., Marks M., Lee A., Stereotactic apparatus for operations on the human brain, Science., 106, pp. 349-350, (1947)
[9]  
Leksell L., Stereotactic aooaratus for intracerebral surgery, Acta Chir Scand., 99, pp. 229-233, (1949)
[10]  
Talairach J., Hecaen M., David M., Monnier M., Ajuriaguerra J., Recherches sur la coagulation therapeutique des structures sous-corticales chez l'homme, Rev Neurol., 81, pp. 4-24, (1949)