Prompt-guided bidirectional deep fusion network for referring image segmentation

被引:0
|
作者
Wu, Junxian [1 ,2 ]
Zhang, Yujia [1 ]
Kampffmeyer, Michael [3 ]
Zhao, Xiaoguang [1 ]
机构
[1] Chinese Acad Sci, Inst Automat, State Key Lab Multimodal Artificial Intelligence S, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing, Peoples R China
[3] UiT Arctic Univ Norway, Dept Phys & Technol, Tromso, Norway
基金
中国国家自然科学基金;
关键词
Referring image segmentation; Prompt-guided bidirectional encoder fusion; Prompt-guided cross-modal interaction;
D O I
10.1016/j.neucom.2024.128899
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Referring image segmentation involves accurately segmenting objects based on natural language descriptions. This poses challenges due to the intricate and varied nature of language expressions, as well as the requirement to identify relevant image regions among multiple objects. Current models predominantly employ language- aware early fusion techniques, which may lead to misinterpretations of language expressions due to the lack of explicit visual guidance of the language encoder. Additionally, early fusion methods are unable to adequately leverage high-level contexts. To address these limitations, this paper introduces the Prompt-guided Bidirectional Deep Fusion Network (PBDF-Net) to enhance the fusion of language and vision modalities. In contrast to traditional unidirectional early fusion approaches, our approach employs a prompt-guided bidirectional encoder fusion (PBEF) module to promote mutual cross-modal fusion across multiple stages of the vision and language encoders. Furthermore, PBDF-Net incorporates a prompt-guided cross-modal interaction (PCI) module during the late fusion stage, facilitating amore profound integration of contextual information from both modalities, resulting in more accurate target segmentation. Comprehensive experiments conducted on the RefCOCO, RefCOCO+, G-Ref and ReferIt datasets substantiate the efficacy of our proposed method, demonstrating significant advancements in performance compared to existing approaches.
引用
收藏
页数:12
相关论文
共 23 条
  • [1] Multiscale deep feature selection fusion network for referring image segmentation
    Xianwen Dai
    Jiacheng Lin
    Ke Nai
    Qingpeng Li
    Zhiyong Li
    Multimedia Tools and Applications, 2024, 83 : 36287 - 36305
  • [2] Multiscale deep feature selection fusion network for referring image segmentation
    Dai, Xianwen
    Lin, Jiacheng
    Nai, Ke
    Li, Qingpeng
    Li, Zhiyong
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (12) : 36287 - 36305
  • [3] GENERATIVE ADVERSARIAL NETWORK INCLUDING REFERRING IMAGE SEGMENTATION FOR TEXT-GUIDED IMAGE MANIPULATION
    Watanabe, Yuto
    Togo, Ren
    Maeda, Keisuke
    Ogawa, Takahiro
    Haseyama, Miki
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 4818 - 4822
  • [4] Structured Attention Network for Referring Image Segmentation
    Lin, Liang
    Yan, Pengxiang
    Xu, Xiaoqian
    Yang, Sibei
    Zeng, Kun
    Li, Guanbin
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 1922 - 1932
  • [5] Mixed-scale cross-modal fusion network for referring image segmentation
    Pan, Xiong
    Xie, Xuemei
    Yang, Jianxiu
    NEUROCOMPUTING, 2025, 614
  • [6] Dual Convolutional LSTM Network for Referring Image Segmentation
    Ye, Linwei
    Liu, Zhi
    Wang, Yang
    IEEE TRANSACTIONS ON MULTIMEDIA, 2020, 22 (12) : 3224 - 3235
  • [7] PRNet: A Progressive Refinement Network for referring image segmentation
    Liu, Jing
    Jiang, Huajie
    Hu, Yongli
    Yin, Baocai
    NEUROCOMPUTING, 2025, 630
  • [8] A CONTEXT-BASED NETWORK FOR REFERRING IMAGE SEGMENTATION
    Li, Xinyu
    Liu, Yu
    Xu, Kaiping
    Zhao, Zhehuan
    Liu, Sipei
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 1436 - 1440
  • [9] Bilateral Knowledge Interaction Network for Referring Image Segmentation
    Ding, Haixin
    Zhang, Shengchuan
    Wu, Qiong
    Yu, Songlin
    Hu, Jie
    Cao, Liujuan
    Ji, Rongrong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 2966 - 2977
  • [10] Text-Guided Image Manipulation via Generative Adversarial Network With Referring Image Segmentation-Based Guidance
    Watanabe, Yuto
    Togo, Ren
    Maeda, Keisuke
    Ogawa, Takahiro
    Haseyama, Miki
    IEEE ACCESS, 2023, 11 : 42534 - 42545