Normalized ground state solutions of Schrodinger-KdV system in R3

被引:0
作者
Gao, Qian [1 ]
Wang, Qun [1 ]
Chang, Xiaojun [2 ,3 ]
机构
[1] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
[2] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
[3] Northeast Normal Univ, Ctr Math & Interdisciplinary Sci, Changchun 130024, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2024年 / 75卷 / 06期
基金
中国国家自然科学基金;
关键词
Normalized solutions; Variational methods; L-2-supercritical growth; Schrodinger-KdV System; ORBITAL STABILITY; STANDING WAVES; SOLITARY WAVES; EXISTENCE; EQUATIONS;
D O I
10.1007/s00033-024-02330-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the coupled Schrodinger-KdV system -Delta u + lambda(1)u = u(3) + beta uv in R-3, -Delta v + lambda(2)v = 1/2v(2) + 1/2 beta u(2) in R-3 subject to the mass constraints integral(R3)vertical bar u vertical bar(2) dx=a, integral(R3)vertical bar v vertical bar(2) dx=b, where a, b > 0 are given constants, beta > 0 , and the frequencies lambda(1), lambda(2) arise as Lagrange multipliers. The system exhibits L-2-supercritical growth. Using a novel constraint minimization approach, we demonstrate the existence of a local minimumsolution to the system. Furthermore, we establish the existence of normalized ground state solutions.
引用
收藏
页数:17
相关论文
共 42 条
[21]   Nonlinear Scalar Field Equations with L2 Constraint: Mountain Pass and Symmetric Mountain Pass Approaches [J].
Hirata, Jun ;
Tanaka, Kazunaga .
ADVANCED NONLINEAR STUDIES, 2019, 19 (02) :263-290
[22]  
Ikoma N, 2019, ADV DIFFERENTIAL EQU, V24, P609
[23]  
Ikoma N, 2014, ADV NONLINEAR STUD, V14, P115
[24]   Existence of solutions with prescribed norm for semilinear elliptic equations [J].
Jeanjean, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (10) :1633-1659
[25]   Normalized ground states for a coupled Schrodinger system: mass super-critical case [J].
Jeanjean, Louis ;
Zhang, Jianjun ;
Zhong, Xuexiu .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 31 (05)
[26]   Orbital stability of ground states for a Sobolev critical Schrodinger equation [J].
Jeanjean, Louis ;
Jendrej, Jacek ;
Le, Thanh Trung ;
Visciglia, Nicola .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2022, 164 :158-179
[27]   Multiple normalized solutions for a Sobolev critical Schrodinger equation [J].
Jeanjean, Louis ;
Thanh Trung Le .
MATHEMATISCHE ANNALEN, 2022, 384 (1-2) :101-134
[28]  
Korteweg D.J., 1895, PHILOS MAG, V39, P422, DOI DOI 10.1080/14786449508620739
[29]   Normalized Ground-State Solution for the Schrodinger-KdV System [J].
Liang, Fei-Fei ;
Wu, Xing-Ping ;
Tang, Chun-Lei .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (06)
[30]   High Accuracy Split-Step Finite Difference Method for Schrodinger-KdV Equations [J].
Liao, Feng ;
Zhang, Lu-Ming .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2018, 70 (04) :413-422