Normalized ground state solutions of Schrodinger-KdV system in R3

被引:0
作者
Gao, Qian [1 ]
Wang, Qun [1 ]
Chang, Xiaojun [2 ,3 ]
机构
[1] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
[2] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
[3] Northeast Normal Univ, Ctr Math & Interdisciplinary Sci, Changchun 130024, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2024年 / 75卷 / 06期
基金
中国国家自然科学基金;
关键词
Normalized solutions; Variational methods; L-2-supercritical growth; Schrodinger-KdV System; ORBITAL STABILITY; STANDING WAVES; SOLITARY WAVES; EXISTENCE; EQUATIONS;
D O I
10.1007/s00033-024-02330-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the coupled Schrodinger-KdV system -Delta u + lambda(1)u = u(3) + beta uv in R-3, -Delta v + lambda(2)v = 1/2v(2) + 1/2 beta u(2) in R-3 subject to the mass constraints integral(R3)vertical bar u vertical bar(2) dx=a, integral(R3)vertical bar v vertical bar(2) dx=b, where a, b > 0 are given constants, beta > 0 , and the frequencies lambda(1), lambda(2) arise as Lagrange multipliers. The system exhibits L-2-supercritical growth. Using a novel constraint minimization approach, we demonstrate the existence of a local minimumsolution to the system. Furthermore, we establish the existence of normalized ground state solutions.
引用
收藏
页数:17
相关论文
共 42 条
[1]   Existence and stability of ground-state solutions of a Schrodinger-KdV system [J].
Albert, J ;
Pava, JA .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2003, 133 :987-1029
[2]  
Alves CO, 2022, CALC VAR PARTIAL DIF, V61, DOI 10.1007/s00526-021-02123-1
[3]   Existence and stability of a two-parameter family of solitary waves for a logarithmic NLS-KdV system [J].
Ardila, Alex H. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 189
[4]   Normalized solutions for a coupled Schrodinger system [J].
Bartsch, Thomas ;
Zhong, Xuexiu ;
Zou, Wenming .
MATHEMATISCHE ANNALEN, 2021, 380 (3-4) :1713-1740
[5]   Normalized solutions for nonlinear Schrodinger systems [J].
Bartsch, Thomas ;
Jeanjean, Louis .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2018, 148 (02) :225-242
[6]   A natural constraint approach to normalized solutions of nonlinear Schrodinger equations and systems [J].
Bartsch, Thomas ;
Soave, Nicola .
JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (12) :4998-5037
[7]   Normalized solutions for a system of coupled cubic Schrodinger equations on R3 [J].
Bartsch, Thomas ;
Jeanjean, Louis ;
Soave, Nicola .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 106 (04) :583-614
[8]   Normalized solutions of nonlinear Schrodinger equations [J].
Bartsch, Thomas ;
de Valeriola, Sebastien .
ARCHIV DER MATHEMATIK, 2013, 100 (01) :75-83
[9]   Well-Posedness for Multicomponent Schrodinger-gKdV Systems and Stability of Solitary Waves with Prescribed Mass [J].
Bhattarai, Santosh ;
Corcho, Adan J. ;
Panthee, Mahendra .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2018, 30 (02) :845-881
[10]   Normalized ground states of the nonlinear Schrodinger equation with at least mass critical growth [J].
Bieganowski, Bartosz ;
Mederski, Jaroslaw .
JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 280 (11)