Lidar-based gas analyzer for remote sensing of atmospheric methane

被引:2
作者
Meshcherinov, Viacheslav [1 ,2 ]
Kazakov, Viktor [2 ]
Spiridonov, Maxim [2 ]
Suvorov, Gennady [3 ,4 ]
Rodin, Alexander [1 ]
机构
[1] Natl Res Univ, Moscow Inst Phys & Technol, Dolgoprudnyi 141701, Russia
[2] Russian Acad Sci IKI RAS, Space Res Inst, Moscow 117997, Russia
[3] Russian Acad Sci IFS RAS, Inst Forest Sci, Uspenskoye 143030, Russia
[4] Russian Acad Sci IEE RAS, A N Severtsov Inst Ecol & Evolut, Moscow 119071, Russia
基金
俄罗斯基础研究基金会;
关键词
Diode laser spectrometer; Gas analysis; Lidar; Greenhouse gases; Remote sensing; Methane leaks; WAVELENGTH-MODULATION SPECTROSCOPY; DIODE-LASERS; ABSORPTION-MEASUREMENTS; FREQUENCY-MODULATION; RAPID TEMPERATURE; SPECTROMETER; EMISSIONS; COMPACT; MOBILE; DEPTH;
D O I
10.1016/j.snb.2024.136899
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Enhancement of methane emission measurement techniques is necessary to address the need for greenhouse gas emissions monitoring. Here we introduce a gas analyzer designed for remote sensing of atmospheric methane aboard unmanned aerial vehicles. This device employs the wavelength modulation laser spectroscopy approach and quadrature detection of laser radiation scattered from the underlying surface. This method is conceptually similar to the operating principle of lidar-based rangefinders, and the device also provides distance measurement capabilities. Our results demonstrate that the observed correlation between various signal attributes and the distance to the surface, where laser radiation scatters, aligns with analytical expectations. Calibrations proved that the instrument provides reliable methane measurements up to 120 m while being lightweight and power efficient. The presented device operates at a sampling rate of 19 Hz and achieves a measurement resolution of 15 ppm & sdot;m at an altitude of 50 m. Notably, this device surpasses its competitors in performance at higher altitudes, which offer greater safety for piloting.
引用
收藏
页数:11
相关论文
共 51 条
[1]   STATISTICS OF ATOMIC FREQUENCY STANDARDS [J].
ALLAN, DW .
PROCEEDINGS OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1966, 54 (02) :221-&
[2]   Assessment of methane emissions from the US oil and gas supply chain [J].
Alvarez, Ramon A. ;
Zavala-Araiza, Daniel ;
Lyon, David R. ;
Allen, David T. ;
Barkley, Zachary R. ;
Brandt, Adam R. ;
Davis, Kenneth J. ;
Herndon, Scott C. ;
Jacob, Daniel J. ;
Karion, Anna ;
Kort, Eric A. ;
Lamb, Brian K. ;
Lauvaux, Thomas ;
Maasakkers, Joannes D. ;
Marchese, Anthony J. ;
Omara, Mark ;
Pacala, Stephen W. ;
Peischl, Jeff ;
Robinson, Allen L. ;
Shepson, Paul B. ;
Sweeney, Colm ;
Townsend-Small, Amy ;
Wofsy, Steven C. ;
Hamburg, Steven P. .
SCIENCE, 2018, 361 (6398) :186-188
[3]   FREQUENCY-MODULATION AND WAVELENGTH MODULATION SPECTROSCOPIES - COMPARISON OF EXPERIMENTAL METHODS USING A LEAD-SALT DIODE-LASER [J].
BOMSE, DS ;
STANTON, AC ;
SILVER, JA .
APPLIED OPTICS, 1992, 31 (06) :718-731
[4]   The indirect global warming potential and global temperature change potential due to methane oxidation [J].
Boucher, Olivier ;
Friedlingstein, Pierre ;
Collins, Bill ;
Shine, Keith P. .
ENVIRONMENTAL RESEARCH LETTERS, 2009, 4 (04)
[5]   First validation of high-resolution satellite-derived methane emissions from an active gas leak in the UK [J].
Dowd, Emily ;
Manning, Alistair J. ;
Orth-Lashley, Bryn ;
Girard, Marianne ;
France, James ;
Fisher, Rebecca E. ;
Lowry, Dave ;
Lanoiselle, Mathias ;
Pitt, Joseph R. ;
Stanley, Kieran M. ;
O'Doherty, Simon ;
Young, Dickon ;
Thistlethwaite, Glen ;
Chipperfield, Martyn P. ;
Gloor, Emanuel ;
Wilson, Chris .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2024, 17 (05) :1599-1615
[6]   Atmospheric CH4 and H2O monitoring with near-infrared InGaAs laser diodes by the SDLA, a balloonborne spectrometer for tropospheric and stratospheric in situ measurements [J].
Durry, G ;
Megie, G .
APPLIED OPTICS, 1999, 38 (36) :7342-7354
[7]   Low-Altitude Aerial Methane Concentration Mapping [J].
Emran, Bara J. ;
Tannant, Dwayne D. ;
Najjaran, Homayoun .
REMOTE SENSING, 2017, 9 (08)
[8]  
Field CB, 2014, CLIMATE CHANGE 2014: IMPACTS, ADAPTATION, AND VULNERABILITY, PT A: GLOBAL AND SECTORAL ASPECTS, P1
[9]   Integrating a UAV System Based on Pixhawk with a Laser Methane Mini Detector to Study Methane Emissions [J].
Filkin, Timofey ;
Lipin, Iliya ;
Sliusar, Natalia .
DRONES, 2023, 7 (10)
[10]   Low-pixel-count imaging FMCW lidar [J].
Gazizov, Iskander ;
Zenevich, Sergei ;
Rodin, Alexander .
APPLIED OPTICS, 2022, 61 (31) :9241-9246