An Adaptive Kalman Filter Combination Positioning Method Integrating UWB and GPS

被引:0
|
作者
Jiang, Rui [1 ]
Tang, Liqin [1 ]
Wang, Xiaoming [1 ]
Zhang, Li [2 ]
Xu, Youyun [1 ]
Li, Dapeng [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Telecommun & Informat Engn, Nanjing 210003, Peoples R China
[2] Nanjing Forestry Univ, Coll Comp Sci & Technol, Nanjing 210016, Peoples R China
基金
中国国家自然科学基金;
关键词
Noise; Heuristic algorithms; Accuracy; Dynamics; Vehicle dynamics; Adaptation models; Noise measurement; Adaptive Kalman filter; adaptive unscented Kalman filter; dynamic target integrated localization; global positioning system; ultra wide band; LOCATION-BASED SERVICES; PARAMETER-ESTIMATION; TARGET TRACKING; STATE; PRIVACY;
D O I
10.1109/TVT.2024.3436851
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Accurate and stable dynamic target positioning can provide high-precision vehicle motion state information for the autonomous driving decision-making system, which plays a very important role in the development of autonomous driving technology. In order to further improve the accuracy and stability of dynamic target positioning, based on the combination of Global Positioning System (GPS) and Ultra Wide Band (UWB) ranging information, the Kalman filter (KF) algorithm is used to process the measurement data of dynamic target. Since it is difficult to determine the system model noise and measurement noise under dynamic conditions, this paper introduces adaptive factor and dynamic window adjustment based on the covariance matching method, then proposes an adaptive Kalman filter (AKF) combination positioning method integrating UWB and GPS. In this method, the GPS single point positioning based on the sliding window AKF algorithm of covariance matching is used when the target is in the linear motion state. Under the condition of nonlinear motion of the target, the UWB/GPS integrated location is on account of the adaptive unscented Kalman filter (AUKF) algorithm which imports the filter divergence criterion. The simulation results confirm that the combined positioning method can adapt to the dynamic positioning requirements in complex environment and outperforms the traditional KF. The developed filtering algorithm has high adaptability, strong robustness, and can effectively improve the positioning accuracy.
引用
收藏
页码:18222 / 18236
页数:15
相关论文
共 50 条
  • [21] Kalman Filter-Based RAIM for Reliable Aircraft Positioning with GPS and NavIC Constellations
    Bhattacharyya, Susmita
    Mute, Dinesh
    SENSORS, 2020, 20 (22) : 1 - 33
  • [22] A Kalman Filter Implementation for Precision Improvement in Low-Cost GPS Positioning of Tractors
    Gomez-Gil, Jaime
    Ruiz-Gonzalez, Ruben
    Alonso-Garcia, Sergio
    Javier Gomez-Gil, Francisco
    SENSORS, 2013, 13 (11): : 15307 - 15323
  • [23] GPS/UWB/MEMS-IMU tightly coupled navigation with improved robust Kalman filter
    Li, Zengke
    Chang, Guobin
    Gao, Jingxiang
    Wang, Jian
    Hernandez, Alberto
    ADVANCES IN SPACE RESEARCH, 2016, 58 (11) : 2424 - 2434
  • [24] Robust Cognitive Radar Tracking Based on Adaptive Unscented Kalman Filter in Uncertain Environments
    Zhong, Lei
    Li, Yong
    Cheng, Wei
    Zhou, Wei
    IEEE ACCESS, 2020, 8 (08): : 163405 - 163418
  • [25] Fuzzy adaptive extended Kalman filter for UAV INS/GPS data fusion
    da Silva, Andre Luis
    da Cruz, Jose Jaime
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2016, 38 (06) : 1671 - 1688
  • [26] Fuzzy adaptive extended Kalman filter for UAV INS/GPS data fusion
    André Luís da Silva
    José Jaime da Cruz
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2016, 38 : 1671 - 1688
  • [27] A Mutual Extension to Kalman Filter for Interpretation of the GPS Ambiguities
    Kumar, P. Sirish
    Dutt, V. B. S. Srilatha Indira
    JOURNAL OF APPLIED SCIENCE AND ENGINEERING, 2021, 24 (01): : 73 - 75
  • [28] Rao-Blackwellized Particle Filter Using Noise Adaptive Kalman Filter for Fully Mixing State-Space Models
    Badar, Tabish
    Sarkka, Simo
    Zhao, Zheng
    Visala, Arto
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2024, 60 (05) : 6972 - 6982
  • [29] Adaptive Unscented Kalman Filter Based Estimation and Filtering for Dynamic Positioning with Model Uncertainties
    Deng, Fang
    Yang, Hua-Lin
    Wang, Long-Jin
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2019, 17 (03) : 667 - 678
  • [30] An Approach to Improve the Positioning Performance of GPS/INS/UWB Integrated System with Two-Step Filter
    Li, Zengke
    Wang, Ren
    Gao, Jingxiang
    Wang, Jian
    REMOTE SENSING, 2018, 10 (01)