Sparsity-constrained and dynamic group structured sparse coding for robust visual tracking

被引:0
作者
Yuan, Guang-Lin [1 ]
Xue, Mo-Gen [2 ]
机构
[1] Eleventh Department, Army Officer Academy of PLA, Hefei, 230031, Anhui
[2] Department of Scientific Research, Army Officer Academy of PLA, Hefei, 230031, Anhui
来源
Tien Tzu Hsueh Pao/Acta Electronica Sinica | 2015年 / 43卷 / 08期
关键词
L1; tracker; Sparse coding; Sparsity-constrained; Spatial continuity structure;
D O I
10.3969/j.issn.0372-2112.2015.08.005
中图分类号
学科分类号
摘要
L1 tracker is one of the most effective methods in dealing with the occlusions for sparseness of coding coefficients of objects. However, the existing sparse coding algorithms do not use special sparse structure of coding coefficients in L1 tracker. In this paper, we propose a two-stage sparse coding algorithm for visual tracking based on constrained sparsity of target template coefficients and spatial continuity structure of trivial template coefficients with block coordinate optimization theory. At the first stage, the algorithm solves sparsity-constrained coding coefficients on target template set using orthogonal matching pursuit. At the second stage, the algorithm finds sparse coding coefficients with spatial continuity on trivial template set via dynamic group sparse coding. Robust visual tracking is achieved using the proposed sparse coding algorithm in particle filter framework. The experimental results demonstrate that the proposed tracking method has better robustness and higher precision than the state-of-the-art trackers. ©, 2015, Chinese Institute of Electronics. All right reserved.
引用
收藏
页码:1499 / 1505
页数:6
相关论文
共 18 条
  • [1] Ross D., Lim J., Lin R.S., Et al., Incremental learning for robust visual tracking, International Journal of Computer Vision, 77, 1-3, pp. 125-141, (2008)
  • [2] Kwon J., Lee K.M., Visual tracking decomposition, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1269-1276, (2010)
  • [3] Babenko B., Yang M.H., Belongie S., Robust object trackingwith online multiple instance learning, IEEE Transactions on Pattern Analysis and Machine Intelligence, 33, 8, pp. 1619-1632, (2011)
  • [4] Donoho D., Compressed sensing, IEEE Transactions Information Theory, 52, 4, pp. 1289-1306, (2006)
  • [5] Wright J., Yang A.Y., Ganesh A., Et al., Robust face recognition via sparse representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 31, 2, pp. 210-227, (2009)
  • [6] Xue M., Ling H., Robust visual tracking using L1 minimization, Proceedings of IEEE Conference on Computer Vision, pp. 1436-1443, (2009)
  • [7] Liu B., Yang L., Huang J., Et al., Robust and fast collaborative tracking with two stage sparse optimization, Proceedings of Conference on European Conference on Computer Vision, pp. 624-637, (2010)
  • [8] Mei X., Ling H.B., Wu Y., Et al., Minimum error bounded efficient L1 tracker with occlusion detection, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1257-1264, (2011)
  • [9] Bao C., Wu Y., Ling H., Et al., Real time robust L1 tracker using accelerated proximal gradient approach, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1830-1837, (2012)
  • [10] Zhang T., Ghanem B., Liu S., Et al., Robust visual tracking via multi-task sparse learning, International Journal of Computer Vision, 101, 2, pp. 367-383, (2013)