Robust stability criteria for interval fractional-order systems: the 0<a<1 case

被引:0
作者
Gao, Zhe [1 ,2 ]
Liao, Xiao-Zhong [1 ,2 ]
机构
[1] School of Automation, Beijing Institute of Technology
[2] Key Laboratory of Complex System Intelligent Control and Decision, Beijing Institute of Technology, Ministry of Education
来源
Zidonghua Xuebao/Acta Automatica Sinica | 2012年 / 38卷 / 02期
关键词
Fractional-order system; Interval uncertainty; Robust stability; Value set;
D O I
10.3724/SP.J.1004.2012.00175
中图分类号
学科分类号
摘要
This paper presents a robust stability theorem like the Kharitonov theorem for interval fractional-order systems with commensurate order between 0 and 1. The condition that the origin is not contained in the value set of the principle branch function of denominator function in an interval fractional-order system is studied. The vertex and edge conditions for interval fractional-order systems are proposed based on the zero exclusion principle. Some matrices depending on parameters of the denominator function are defined and the edge conditions are tested by checking whether eigenvalues of each matrix lie on the negative real axis. Finally, two numerical examples are analyzed to illustrate the effectiveness of the proposed method. © 2012 Acta Automatica Sinica. All rights reserved.
引用
收藏
页码:175 / 182
页数:7
相关论文
共 17 条
[1]  
Machado J.T., Kiryakova V., Mainardi F., Recent history of fractional calculus, Communications in Nonlinear Science and Numerical Simulation, 16, 3, pp. 1140-1153, (2011)
[2]  
Jesus I.S., Machado J.A.T., Fractional control of heat diffusion systems, Nonlinear Dynamics, 54, 3, pp. 263-282, (2008)
[3]  
Valerio D., Costa J.S., Time-domain implementation of fractional order controllers, IEE Proceedings - Control Theory and Applications, 152, 5, pp. 539-552, (2005)
[4]  
Zamani M., Karimi-Ghartemani M., Sadati N., Parniani M., Design of a fractional order PID controller for an AVR using particle swarm optimization, Control Engineering Practice, 17, 12, pp. 1380-1387, (2009)
[5]  
Merrikh-Bayat F., Karimi-Ghartemani M., Method for designing PI <sup>λ</sup>D <sup>μ</sup> stabilisers for minimum-phase fractional-order systems, IET Control Theory and Applications, 4, 1, pp. 61-70, (2010)
[6]  
Pisano A., Rapaic M.R., Jelicic Z.D., Usai E., Sliding mode control approaches to the robust regulation of linear multi-variable fractional-order dynamics, International Journal of Robust Nonlinear Control, 20, 18, pp. 2045-2056, (2010)
[7]  
Jelicic Z.D., Petrovacki N., Optimality conditions and a solution scheme for fractional optimal control problems, Structural and Multidisciplinary Optimization, 38, 6, pp. 571-581, (2009)
[8]  
Li Y., Chen Y.Q., Ahn H.S., Fractional-order iterative learning control for fractional-order linear systems, Asian Journal of Control, 13, 1, pp. 54-63, (2011)
[9]  
Tavazoei M.S., Haeri M., A note on the stability of fractional order systems, Mathematics and Computers in Simulation, 79, 5, pp. 1566-1576, (2009)
[10]  
Lu J.G., Chen Y.Q., Robust stability and stabilization of fractional-order interval systems with the fractional order a: The 0<a<1 case, IEEE Transactions on Automatic Control, 55, 1, pp. 152-158, (2010)