On the trace-zero doubly stochastic matrices of order 5

被引:0
作者
Mandal, Amrita [1 ,2 ,3 ]
Adhikari, Bibhas [3 ]
机构
[1] Birla Inst Technol Mesra, Dept Math, Ranchi, India
[2] Harish Chandra Res Inst, Prayagraj, India
[3] IIT Kharagpur, Dept Math, Kharagpur, India
关键词
Permutation matrix; Doubly stochastic matrix; Inverse eigenvalue problem; COEFFICIENTS; EIGENVALUES;
D O I
10.1016/j.laa.2024.10.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a graph theoretic approach to determine the trace of the product of two permutation matrices through a weighted digraph representation for a pair of permutation matrices. Consequently, we derive trace-zero doubly stochastic (DS) matrices of order 5 whose k-th power is also a trace-zero DS matrix for k is an element of {2, 3, 4, 5}. Then, we determine necessary conditions for the coefficients of a generic polynomial of degree 5 to be realizable as the characteristic polynomial of a trace-zero DS matrix of order 5. Finally, we approximate the eigenvalue region of trace-zero DS matrices of order 5. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:340 / 360
页数:21
相关论文
共 20 条
[1]   A NOTE ON EIGENVALUES LOCATION FOR TRACE ZERO DOUBLY STOCHASTIC MATRICES [J].
Benvenuti, L. .
ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2015, 30 :599-604
[2]   The NIEP for four dimensional Leslie and doubly stochastic matrices with zero trace from the coefficients of the characteristic polynomial [J].
Benvenuti, Luca .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 544 :286-298
[3]  
Benvenuti Luca, Personal communication
[4]  
Dummit D.S., 1991, Abstract algebra
[5]   The Doubly Stochastic Single Eigenvalue Problem: A Computational Approach [J].
Harlev, Amit ;
Johnson, Charles R. ;
Lim, Derek .
EXPERIMENTAL MATHEMATICS, 2022, 31 (03) :936-945
[6]  
Johnson C., 1981, LINEAR MULTILINEAR A, V10, P113, DOI DOI 10.1080/03081088108817402
[7]  
Johnson C.R., 2018, Oper. Theory Adv. Appl., V267, P199, DOI [10.1007/978-3-, DOI 10.1007/978-3]
[8]   A matricial view of the Karpelevic Theorem [J].
Johnson, Charles R. ;
Paparella, Pietro .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 520 :1-15
[9]  
Kalman D., 2000, Math. Mag., V73, P313
[10]  
Laffey TJ, 1999, LINEAR ALGEBRA APPL, V303, P295