Denoising Method Based on Improved DBSCAN for Lidar Point Cloud

被引:0
作者
Zhao, Zhe [1 ]
Zhou, Weilong [2 ]
Liang, Denghui [2 ]
Liu, Juntao [2 ]
Lee, Xiaobao [2 ]
机构
[1] Hunan Univ Technol, Coll Railway Transportat, Zhuzhou 412007, Peoples R China
[2] Hunan Univ Technol, Coll Elect & Informat Engn, Zhuzhou 412007, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Three-dimensional point cloud; noise; DBSCAN; adaptive; ALGORITHM;
D O I
10.1109/ACCESS.2024.3464611
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Lidar 3D point cloud data often contains significant noise, which affects the accuracy and reliability of subsequent data analysis. This study aims to propose an improved adaptive DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithm to more effectively remove noise from LiDAR 3D point cloud data, ensuring high noise reduction accuracy and retention of original points, whereas maintaining good adaptability and robustness across different point cloud distributions and noise levels. The method determines the Eps range by fitting the inflection point of the distance matrix curve and identifies suitable parameters for point cloud data processing by finding the optimal Calinski-Harabasz index value. Experimental results show that this method achieves noise reduction accuracy and original point retention rates of over 90% when processing different types of point cloud data, whereas effectively preserving environmental and target information. This method addresses the limitations of adaptive parameter determination in existing DBSCAN-based denoising research by dynamically adjusting parameters according to the density characteristics of LiDAR point cloud data, meeting the needs of different point cloud distributions and noise levels.
引用
收藏
页码:137656 / 137666
页数:11
相关论文
共 24 条
[1]   PCA-Based Denoising Algorithm for Outdoor Lidar Point Cloud Data [J].
Cheng, Dongyang ;
Zhao, Dangjun ;
Zhang, Junchao ;
Wei, Caisheng ;
Tian, Di .
SENSORS, 2021, 21 (11)
[2]   A local-density based spatial clustering algorithm with noise [J].
Duan, Lian ;
Xu, Lida ;
Guo, Feng ;
Lee, Jun ;
Yan, Baopin .
INFORMATION SYSTEMS, 2007, 32 (07) :978-986
[3]   Low-complexity adaptive radius outlier removal filter based on PCA for lidar point cloud denoising [J].
Duan, Yao ;
Yang, Chuanchuan ;
Li, Hongbin .
APPLIED OPTICS, 2021, 60 (20) :E1-E7
[4]   Design of Tobacco Leaves Classifier Through Fuzzy Clustering-Based Neural Networks With Multiple Histogram Analyses of Images [J].
Kim, Eun-Hu ;
Wang, Zheng ;
Zong, Hao ;
Jiang, Ziwu ;
Fu, Zunwei ;
Pedrycz, Witold .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (03) :4698-4709
[5]   Sparse Regularization-Based Approach for Point Cloud Denoising and Sharp Features Enhancement [J].
Leal, Esmeide ;
Sanchez-Torres, German ;
Branch, John W. .
SENSORS, 2020, 20 (11) :1-18
[6]   Adaptive and Feature-Preserving Bilateral Filters for Three-Dimensional Models [J].
Li, Nannan ;
Yue, Shaoyang ;
Jiang, Bo .
TRAITEMENT DU SIGNAL, 2020, 37 (02) :157-168
[7]   A genetic algorithm using Calinski-Harabasz index for automatic clustering problem [J].
Lima, Suzane Pereira ;
Cruz, Marcelo Dib .
REVISTA BRASILEIRA DE COMPUTACAO APLICADA, 2020, 12 (03) :97-106
[8]  
[柳斌 Liu Bin], 2023, [兵工学报, Acta Armamentarii], V44, P2768
[9]   Photon-Counting Lidar: An Adaptive Signal Detection Method for Different Land Cover Types in Coastal Areas [J].
Ma, Yue ;
Zhang, Wenhao ;
Sun, Jinyan ;
Li, Guoyuan ;
Wang, Xiao Hua ;
Li, Song ;
Xu, Nan .
REMOTE SENSING, 2019, 11 (04)
[10]  
Marc L., The Stanford 3D scanning Repository