共 24 条
- [1] Li X., Li C., Rahaman M. M., Sun H., Li H., Wu J., Yao Y., Grzegorzek M., A comprehensive review of computer-aided whole-slide image analysis: From datasets to feature extraction, segmentation, classification and detection approaches, Artificial Intelligence Review, 55, pp. 4809-4878, (2022)
- [2] Barbhuiya A. A., Karsh R. K., Jain R., CNN based feature extraction and classification for sign language, Multimedia Tools and Applications, 80, pp. 3051-3069, (2021)
- [3] Al-doori S. K. S., Taspinar Y. S., Koklu M., Distracted driving detection with machine learning methods by cnn based feature extraction, International Journal of Applied Mathematics Electronics and Computers, 9, 4, pp. 116-121, (2021)
- [4] Taiwo R., Zayed T., Seghier M. E. A. B., Integrated intelligent models for predicting water pipe failure probability, Alexandria Engineering Journal, 86, pp. 243-257, (2024)
- [5] Sharifani K., Amini M., Machine learning and deep learning: A review of methods and applications, World Information Technology and Engineering Journal, 10, pp. 3897-3904, (2023)
- [6] Menghani G., Efficient deep learning: A survey on making deep learning models smaller, faster, and better, ACM Computing Surveys, 55, 12, pp. 1-37, (2023)
- [7] Yonekura K., Suzuki K., Data-driven design exploration method using conditional variational autoencoder for airfoil design, Structural and Multidisciplinary Optimization, 64, pp. 613-624, (2021)
- [8] Bai J., Wang W., Gomes C. P., Contrastively disentangled sequential variational autoencoder, Advances in Neural Information Processing Systems, pp. 10105-10118, (2021)
- [9] Kumar V. T. R. P., Arulselvi M., Sastry K. B. S., Comparative assessment of colon cancer classification using diverse deep learning approaches, Journal of Data Science and Intelligent Systems, 1, 3, pp. 128-135, (2023)
- [10] Mansour R. F., Escorcia-Gutierrez J., Gamarra M., Gupta D., Castillo O., Kumar S., Unsupervised deep learning based variational autoencoder model for COVID-19 diagnosis and classification, Pattern Recognition Letters, 151, pp. 267-274, (2021)