Global existence and blow-up of solutions for some hyperbolic systems with damping and source terms

被引:24
作者
Department of Mathematics, Southeast University, Nanjing 210018, China [1 ]
不详 [2 ]
机构
[1] Department of Mathematics, Southeast University
[2] Department of Mathematics, Xuzhou Normal University
来源
Nonlinear Anal Theory Methods Appl | 2006年 / 1卷 / 69-91期
基金
中国国家自然科学基金;
关键词
Damping and source terms; Existence and uniqueness; Finite time blow-up; Hyperbolic systems; Lifespan;
D O I
10.1016/j.na.2005.06.009
中图分类号
学科分类号
摘要
This paper deals with the global existence and blow-up of solutions to some nonlinear hyperbolic systems with damping and source terms in a bounded domain. By using the potential well method, we obtain the global existence. Moreover, for the problem with linear damping terms, blow-up of solutions is considered and some estimates for the lifespan of solutions are given. © 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:69 / 91
页数:22
相关论文
共 15 条
[1]  
Adams R.A., Sobolev Space, (1975)
[2]  
Brito E.H., Nonlinear initial boundary value problems, Nonlinear Anal. Theory Methods Appl., 11, 1, pp. 125-137, (1987)
[3]  
Cavalcanti M.M., Domingos Cavalcanti V.N., Existence and asymptotic stability for evolution problems on manifolds with damping and source terms, J. Math. Anal. Appl., 291, pp. 109-127, (2004)
[4]  
Georgiev V., Todorova G., Existence of a solution of the wave equation with nonlinear damping and source terms, J. Differential Equations, 109, pp. 295-308, (1994)
[5]  
Ikehata R., On the existence of global solutions for some nonlinear hyperbolic equations with Newman conditions, TRU Math., 24, pp. 1-17, (1988)
[6]  
Kirchhoff G., Vorlesungen uber Mechanik, (1883)
[7]  
Levine H.A., Instability and nonexistence of global solutions to nonlinear wave equations of the form Pu<sub>tt</sub> = - Au +(u), Trans. Amer. Math. Soc., 192, pp. 1-21, (1974)
[8]  
Levine H.A., Nonexistence of global weak solutions to some properly and improperly posed problems of mathematical physics: The method of unbounded Fourier coefficient, Math. Ann., 214, pp. 205-220, (1975)
[9]  
Lions J.L., Quelques Méthode de Résolution des Probléme aux Limites Nonlinéaire, (1969)
[10]  
Matsuyama T., Ikehata R., On global solutions and energy decay for the wave equations of Kirchhoff type with nonlinear damping terms, J. Math. Anal. Appl., 204, pp. 729-753, (1996)