Revealing the Fundamental Limit of Gate-Controlled Ultrafast Charge Transfer in Graphene-MoS2 Heterostructures

被引:2
作者
Wang, Chen [1 ]
Chen, Yu [2 ]
Ma, Qiushi [3 ]
Suo, Peng [1 ,4 ]
Sun, Kaiwen [1 ]
Cheng, Yifan [1 ]
Lin, Xian [1 ]
Liu, Weimin [2 ]
Ma, Guohong [1 ,4 ]
机构
[1] Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China
[2] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
[3] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA
[4] Shanghai Univ, Inst Quantum Sci & Technol, Shanghai 200444, Peoples R China
来源
ACS PHOTONICS | 2024年 / 11卷 / 12期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
charge transfer; van der Waals heterostructures; gate-controlled; transient absorption spectroscopy; terahertz spectroscopy; dynamics; TRANSPORT; DYNAMICS; TRANSITION; MOBILITY;
D O I
10.1021/acsphotonics.4c01391
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
When graphene forms heterostructures with transition metal dichalcogenides (TMDCs), the photons with energy below the TMDCs' bandgap can be harvested by graphene and injected into TMDCs through ultrafast charge transfer. Controlling and understanding this ultrafast charge transfer are crucial for developing advanced photonic and optoelectronic devices. Here, we use ultrafast terahertz and transient absorption spectroscopy to demonstrate the significant potential of a gate-controlled method in controlling the ultrafast charge transfer efficiency in graphene-MoS2 heterostructures and reveal the fundamental limitation of the method. Our results show that the number of hot electrons transferred from graphene to MoS2 can be modulated several fold by gate bias, achieved by altering the Fermi distribution of hot electrons in graphene. There is an upper limit to the gate-controlled method in the aforementioned modulation, and we reveal that the underlying mechanism of this limitation is that, at high gate bias, the chemical potential of graphene surpasses the band edge of MoS2, leading to an increased energy barrier for charge transfer. A photothermionic emission model incorporating the gate-controlled limit can well reproduce the experimental findings. Our study demonstrates the role and fundamental limitation of the gate-controlled method in regulating ultrafast charge transfer in graphene-MoS2 heterostructures, providing insights for the development of related photodetectors, solar cells, and optoelectronic devices.
引用
收藏
页码:5170 / 5179
页数:10
相关论文
共 50 条
  • [1] Strongly anisotropic spin relaxation in graphene-transition metal dichalcogenide heterostructures at room temperature
    Antonio Benitez, L.
    Sierra, Juan F.
    Savero Torres, Williams
    Arrighi, Alois
    Bonell, Frederic
    Costache, Marius V.
    Valenzuela, Sergio O.
    [J]. NATURE PHYSICS, 2018, 14 (03) : 303 - +
  • [2] Identifying suitable substrates for high-quality graphene-based heterostructures
    Banszerus, L.
    Janssen, H.
    Otto, M.
    Epping, A.
    Taniguchi, T.
    Watanabe, K.
    Beschoten, B.
    Neumaier, D.
    Stampfer, C.
    [J]. 2D MATERIALS, 2017, 4 (02):
  • [3] Ultrahigh electron mobility in suspended graphene
    Bolotin, K. I.
    Sikes, K. J.
    Jiang, Z.
    Klima, M.
    Fudenberg, G.
    Hone, J.
    Kim, P.
    Stormer, H. L.
    [J]. SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) : 351 - 355
  • [4] Charge-transfer dynamics studied using resonant core spectroscopies
    Brühwiler, PA
    Karis, O
    Mårtensson, N
    [J]. REVIEWS OF MODERN PHYSICS, 2002, 74 (03) : 703 - 740
  • [5] Spatiotemporal imaging of charge transfer in photocatalyst particles
    Chen, Ruotian
    Ren, Zefeng
    Liang, Yu
    Zhang, Guanhua
    Dittrich, Thomas
    Liu, Runze
    Liu, Yang
    Zhao, Yue
    Pang, Shan
    An, Hongyu
    Ni, Chenwei
    Zhou, Panwang
    Han, Keli
    Fan, Fengtao
    Li, Can
    [J]. NATURE, 2022, 610 (7931) : 296 - +
  • [6] Highly efficient hot electron harvesting from graphene before electron-hole thermalization
    Chen, Yuzhong
    Li, Yujie
    Zhao, Yida
    Zhou, Hongzhi
    Zhu, Haiming
    [J]. SCIENCE ADVANCES, 2019, 5 (11):
  • [7] Three-dimensional charge transfer pathway in close-packed nickel hexacyanoferrate-on-MXene nano-stacking for high-performance capacitive deionization
    Chen, Zeqiu
    Ding, Zibiao
    Chen, Yaoyu
    Xu, Xingtao
    Liu, Yong
    Lu, Ting
    Pan, Likun
    [J]. CHEMICAL ENGINEERING JOURNAL, 2023, 452
  • [8] Recent Advances in Optoelectronic Devices Based on 2D Materials and Their Heterostructures
    Cheng, Jinbing
    Wang, Chunlan
    Zou, Xuming
    Liao, Lei
    [J]. ADVANCED OPTICAL MATERIALS, 2019, 7 (01)
  • [9] Charge-transfer electronic states in organic solar cells
    Coropceanu, Veaceslav
    Chen, Xian-Kai
    Wang, Tonghui
    Zheng, Zilong
    Bredas, Jean-Luc
    [J]. NATURE REVIEWS MATERIALS, 2019, 4 (11) : 689 - 707
  • [10] Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor
    Das, A.
    Pisana, S.
    Chakraborty, B.
    Piscanec, S.
    Saha, S. K.
    Waghmare, U. V.
    Novoselov, K. S.
    Krishnamurthy, H. R.
    Geim, A. K.
    Ferrari, A. C.
    Sood, A. K.
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (04) : 210 - 215