Wave function for odd-frequency superconductors

被引:22
作者
Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, United States [1 ]
不详 [2 ]
不详 [3 ]
不详 [4 ]
机构
[1] Theoretical Division, Los Alamos National Laboratory, Los Alamos
[2] Serin Physics Laboratory, Rutgers University, Piscataway, NJ 08855
[3] Department of Applied Physics, Nagoya University, Chikusa-ku
[4] Center for Integrated Nanotechnology, Los Alamos National Laboratory, Los Alamos
来源
New J. Phys. | 2009年
关键词
Wave functions;
D O I
10.1088/1367-2630/11/6/065005
中图分类号
学科分类号
摘要
We revisit the question of the nature of odd-frequency superconductors, first proposed by Berezinskii in 1974 (JETP Lett. 20 287). We start with the notion that the order parameter of odd-frequency superconductors can be thought of as a time derivative of the odd-time pairing operator. This leads to the notion of the composite boson condensate (Abrahams et al 1995 Phys. Rev. B 52 1271; Balatsky and Bonca 1993 Phys. Rev. B 48 7445). To elucidate the nature of broken symmetry states in odd-frequency superconductors, we consider a wave function that properly captures the coherent condensate of composite charge 2e bosons in an odd-frequency superconductor. We consider the Hamiltonian that describes the equal-time composite boson condensation as proposed earlier by Abrahams et al (1995 Phys. Rev. B 52 1271). We propose a Bardeen-Cooper- Schrieffer (BCS)-like wave function that describes a composite condensate comprised of a spin-0 Cooper pair and a spin-1 magnon excitation. We derive the quasi-particle dispersion, the self-consistent equation for the order parameter and the density of states. We show that the coherent wave function approach recovers all the known proprietaries of odd-frequency superconductors: the quasi-particle excitations are gapless and the superconducting transition requires a critical coupling. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
引用
收藏
相关论文
共 11 条
[1]  
Berezinskii V.L., JETP Lett, 20, (1974)
[2]  
Abrahams E., Balatsky A., Scalapino D.J., Schrieffer J.R., Phys. Rev. B, 52, (1995)
[3]  
Balatsky A.V., Bonca J., Phys. Rev. B, 48, (1993)
[4]  
Balatsky A., Abrahams E., Phys. Rev. B, 45, (1992)
[5]  
Abrahams E., Balatsky A., Schrieffer J.R., Allen P.B., Phys. Rev. B, 47, (1993)
[6]  
Coleman P., Miranda E., Tsvelik A., Phys. Rev. B, 49, (1994)
[7]  
Bergeret F.S., Volkov A.F., Efetov K.B., Phys. Rev. Lett, 86, (2001)
[8]  
Tanaka Y., Tanuma Y., Golubov A.A., Phys. Rev. B, 76, (2007)
[9]  
Tanaka Y., Golubov A.A., Phys. Rev. Lett, 98, (2007)
[10]  
Fuseya Y., Kohno H., Miyake K., J Phys. Soc. Japan, 72, (2003)