Optimal regularization for ill-posed problems in metric spaces

被引:0
作者
Institute for Mathematical Stochastics, University of Göttingen, Maschmühlenweg 8-10, 37073 Göttingen, Germany [1 ]
机构
[1] Institute for Mathematical Stochastics, University of Göttingen, 37073 Göttingen
来源
J Inverse Ill Posed Probl | 2007年 / 2卷 / 137-148期
关键词
Lepskij-type balancing principle; Regularization in normed spaces;
D O I
10.1515/JIIP.2007.007
中图分类号
学科分类号
摘要
We present a strategy for choosing the regularization parameter (Lepskij-type balancing principle) for ill-posed problems in metric spaces with deterministic or stochastic noise. Additionally we improve the strategy in comparison to the previously used version for Hilbert spaces in some ways. © de Gruyter 2007.
引用
收藏
页码:137 / 148
页数:11
相关论文
共 18 条
[1]  
Bauer F., Pereverzev S., Regularization without preliminary knowledge of smoothness and error behaviour, European Journal of Applied Mathematics, 16, 3, pp. 303-317, (2005)
[2]  
Bissantz N., Hohage T., Munk A., Consistency and rates of convergence of nonlinear Tikhonov regularization with random noise, Inverse Problems, 20, pp. 1773-1791, (2004)
[3]  
Devroye L., Lugosi G., Combinatorial Methods in Density Estimation, Springer Series in Statistics, (2001)
[4]  
Engl H., Hanke M., Neubauer A., Regularization of Inverse Problems, Mathematics and Its Applications, (1996)
[5]  
Hansen P., Rank-deficient and discrete ill-posed problems, SIAM Monographs on Mathematical Modeling and Computation, (1998)
[6]  
Hofmann B., Regularization of Applied Inverse and Ill-Posed Problems, (1986)
[7]  
Lepskii O.V., On a problem of adaptive estimation in Gaussian white noise, Theory of Probability and Its Applications, 35, pp. 454-466, (1990)
[8]  
Mair B.A., Ruymgaart F.H., Statistical inverse estimation in Hilbert scales, SIAM J. Appl. Math., 56, pp. 1424-1444, (1996)
[9]  
Mathe P., Pereverzev S., Geometry of linear ill-posed problems in variable Hilbert spaces, Inverse Problems, 19, pp. 789-803, (2003)
[10]  
Morozov V.A., Methods for Solving Incorrectly Posed Problems, (1984)