Hierarchical Information-Sharing Convolutional Neural Network for the Prediction of Arctic Sea Ice Concentration and Velocity

被引:1
作者
Koo, Younghyun [1 ,2 ]
Rahnemoonfar, Maryam [1 ,2 ]
机构
[1] Lehigh Univ, Dept Comp Sci & Engn, Bethlehem, PA 18015 USA
[2] Lehigh Univ, Dept Civil & Environm Engn, Bethlehem, PA 18015 USA
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2024年 / 62卷
关键词
Sea ice; Predictive models; Ice; Arctic; Multitasking; Deep learning; Atmospheric modeling; Convolutional neural networks; Numerical models; Mathematical models; Cryosphere; information sharing; machine learning (ML); sea ice forecast; sea ice motion; U-net; weighting attention module (WAM); SATELLITE; TRENDS; MOTION; ALGORITHMS; FORECAST; CLIMATE; DRIFT; WIND;
D O I
10.1109/TGRS.2024.3501094
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Forecasting sea ice concentration (SIC) and sea ice velocity (SIV) in the Arctic Ocean is of great significance as the Arctic environment has been changed by the recent warming climate. Given that physical sea ice models require high computational costs with complex parameterization, deep learning techniques can effectively replace the physical model and improve the performance of sea ice prediction. This study proposes a novel multitask fully conventional network architecture named hierarchical information-sharing U-net (HIS-Unet) to predict daily SIC and SIV. Instead of learning SIC and SIV separately at each branch, we allow the SIC and SIV layers to share their information and assist each other's prediction through the weighting attention modules (WAMs). Consequently, our HIS-Unet outperforms other statistical approaches, sea ice physical models, and neural networks without such information-sharing units. The improvement of HIS-Unet is more significant to when and where SIC changes seasonally, which implies that the information sharing between SIC and SIV through WAMs helps learn the dynamic changes of SIC and SIV. The weight values of the WAMs imply that SIC information plays a more critical role in SIV prediction, compared to that of SIV information in SIC prediction, and information sharing is more active in marginal ice zones [e.g., East Greenland (EG) and Hudson/Baffin Bays (HBB)] than in the central Arctic (CA).
引用
收藏
页数:13
相关论文
共 71 条
[1]  
Alhichri H, 2018, INT GEOSCI REMOTE SE, P1195, DOI 10.1109/IGARSS.2018.8518874
[2]   Seasonal Arctic sea ice forecasting with probabilistic deep learning [J].
Andersson, Tom R. ;
Hosking, J. Scott ;
Perez-Ortiz, Maria ;
Paige, Brooks ;
Elliott, Andrew ;
Russell, Chris ;
Law, Stephen ;
Jones, Daniel C. ;
Wilkinson, Jeremy ;
Phillips, Tony ;
Byrne, James ;
Tietsche, Steffen ;
Sarojini, Beena Balan ;
Blanchard-Wrigglesworth, Eduardo ;
Aksenov, Yevgeny ;
Downie, Rod ;
Shuckburgh, Emily .
NATURE COMMUNICATIONS, 2021, 12 (01)
[3]   A climatology of thermodynamic vs. dynamic Arctic wintertime sea ice thickness effects during the CryoSat-2 era [J].
Anheuser, James ;
Liu, Yinghui ;
Key, Jeffrey R. .
CRYOSPHERE, 2023, 17 (07) :2871-2889
[4]   Development of ANN-Based Algorithm to Estimate Wintertime Sea Ice Temperature Profile Over the Arctic Ocean [J].
Baek, Sung-Ho ;
Kang, Eui-Jong ;
Sohn, Byung-Ju ;
Kim, Sang-Woo ;
Shi, Hoyeon .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
[5]   Model forecast skill and sensitivity to initial conditions in the seasonal Sea Ice Outlook [J].
Blanchard-Wrigglesworth, E. ;
Cullather, R. I. ;
Wang, W. ;
Zhang, J. ;
Bitz, C. M. .
GEOPHYSICAL RESEARCH LETTERS, 2015, 42 (19) :8042-8048
[6]   The Future of Sea Ice Modeling Where Do We Go from Here? [J].
Blockley, Ed ;
Vancoppenolle, Martin ;
Hunke, Elizabeth ;
Bitz, Cecilia ;
Feltha, Daniel ;
Lemieux, Jean-Francois ;
Losch, Martin ;
Maisonnave, Eric ;
Notz, Dirk ;
Rampal, Pierre ;
Tietsche, Steffen ;
Tremblay, Bruno ;
Turner, Adrian ;
Massonnet, Francois ;
Olason, Einar ;
Roberts, Andrew ;
Aksenov, Yevgeny ;
Fichefet, Thierry ;
Garric, Gilles ;
Lovino, Doroteaciro ;
Madec, Gurvan ;
Rousset, Clement ;
Melia, David Salas y ;
Schroeder, David .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2020, 101 (08) :E1304-E1311
[7]   Long-Term and Seasonal Variability of Wind and Wave Extremes in the Arctic Ocean [J].
Cabral, Isabela S. ;
Young, Ian R. ;
Toffoli, Alessandro .
FRONTIERS IN MARINE SCIENCE, 2022, 9
[8]   Arctic sea ice variability and trends, 1979-2010 [J].
Cavalieri, D. J. ;
Parkinson, C. L. .
CRYOSPHERE, 2012, 6 (04) :881-889
[9]   DETERMINATION OF SEA ICE PARAMETERS WITH THE NIMBUS-7 SMMR [J].
CAVALIERI, DJ ;
GLOERSEN, P ;
CAMPBELL, WJ .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1984, 89 (ND4) :5355-5369
[10]   The HYCOM (HYbrid Coordinate Ocean Model) data assimilative system [J].
Chassignet, Eric P. ;
Hurlburt, Harley E. ;
Smedstad, Ole Martin ;
Halliwell, George R. ;
Hogan, Patrick J. ;
Wallcraft, Alan J. ;
Baraille, Remy ;
Bleck, Rainer .
JOURNAL OF MARINE SYSTEMS, 2007, 65 (1-4) :60-83