首页
学术期刊
论文检测
AIGC检测
热点
更多
数据
A class of neural-network-based transducers for web information extraction
被引:0
作者
:
Sleiman, Hassan A.
论文数:
0
引用数:
0
h-index:
0
机构:
University of Sevilla, ETSI Informática, 41012 Sevilla, Spain
University of Sevilla, ETSI Informática, 41012 Sevilla, Spain
Sleiman, Hassan A.
[
1
]
Corchuelo, Rafael
论文数:
0
引用数:
0
h-index:
0
机构:
University of Sevilla, ETSI Informática, 41012 Sevilla, Spain
University of Sevilla, ETSI Informática, 41012 Sevilla, Spain
Corchuelo, Rafael
[
1
]
机构
:
[1]
University of Sevilla, ETSI Informática, 41012 Sevilla, Spain
来源
:
Neurocomputing
|
2014年
/ 135卷
关键词
:
Information retrieval - Learning algorithms - Learning systems;
D O I
:
暂无
中图分类号
:
学科分类号
:
摘要
:
The Web is a huge and still growing information repository that has attracted the attention of many companies. Many such companies rely on information extractors to integrate information that is buried into semi-structured web documents into automatic business processes. Many information extractors build on extraction rules, which can be handcrafted or learned using supervised or unsupervised techniques. The literature provides a variety of techniques to learn information extraction rules that build on ad hoc machine learning techniques. In this paper, we propose a hybrid approach that explores the use of standard machine-learning techniques to extract web information. We have specifically explored using neural networks; our results show that our proposal outperforms three state-of-the-art techniques in the literature, which opens up quite a new approach to information extraction. © 2013 Elsevier B.V.
引用
收藏
页码:61 / 68
相关论文
未找到相关数据
未找到相关数据