Importance of variables from different time frames for predicting self-harm using health system data

被引:0
作者
Wolock, Charles J. [1 ]
Williamson, Brian D. [2 ,3 ]
Shortreed, Susan M. [3 ]
Simon, Gregory E. [2 ,4 ]
Coleman, Karen J. [4 ]
Yeargans, Rodney
Ahmedani, Brian K. [5 ]
Daida, Yihe [6 ]
Lynch, Frances L. [7 ]
Rossom, Rebecca C. [9 ]
Ziebell, Rebecca A. [2 ,8 ]
Cruz, Maricela [2 ]
Wellman, Robert D. [2 ]
Coley, R. Yates [2 ]
机构
[1] Univ Penn, Dept Biostat Epidemiol & Informat, 423 Guardian Dr, Philadelphia, PA 19104 USA
[2] Kaiser Permanente Washington Hlth Res Inst, 1730 Minor Ave Suite 1360, Seattle, WA 98101 USA
[3] Univ Washington, Dept Biostat, 3980 15th Ave NE Box 351617, Seattle, WA 98195 USA
[4] Bernard J Tyson Kaiser Permanente Sch Med, Dept Hlth Syst Sci, 98 S Robles Ave, Pasadena, CA 91101 USA
[5] Kaiser Permanente Southern Calif, Dept Res & Evaluat, 100 S Los Robles Ave, Pasadena, CA 91101 USA
[6] Henry Ford Hlth, Ctr Hlth Policy & Hlth Serv Res, One Ford Pl-3A, Detroit, MI 48202 USA
[7] Kaiser Permanente Hawaii, Ctr Integrated Hlth Care Res, 501 Alakawa St Suite 201, Honolulu, HI 96817 USA
[8] Kaiser Permanente Northwest, Ctr Hlth Res, 3800 N Interstate Ave, Portland, OR 97227 USA
[9] HealthPartners Inst, 8170 33rd Ave S, Bloomington, MN 55425 USA
基金
美国国家科学基金会;
关键词
Clinical prediction models; Feature importance; Insurance claims data; Predictive analytics; Suicide; SUICIDAL-BEHAVIOR; RISK; PHQ-9;
D O I
10.1016/j.jbi.2024.104750
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Objective: Self-harm risk prediction models developed using health system data (electronic health records and insurance claims information) often use patient information from up to several years prior to the index visit when the prediction is made. Measurements from some time periods may not be available for all patients. Using the framework of algorithm-agnostic variable importance, we study the predictive potential of variables corresponding to different time horizons prior to the index visit and demonstrate the application of variable importance techniques in the biomedical informatics setting. Materials and Methods: We use variable importance to quantify the potential of recent (up to three months before the index visit) and distant (more than one year before the index visit) patient mental health information for predicting self-harm risk using data from seven health systems. We quantify importance as the decrease in predictiveness when the variable set of interest is excluded from the prediction task. We define predictiveness using discriminative metrics: area under the receiver operating characteristic curve (AUC), sensitivity, and positive predictive value. Results: Mental health predictors corresponding to the three months prior to the index visit show strong signal of importance; in one setting, excluding these variables decreased AUC from 0.85 to 0.77. Predictors corresponding to more distant information were less important. Discussion: Predictors from the months immediately preceding the index visit are highly important. Implementation of self-harm prediction models may be challenging in settings where recent data are not completely available (e.g., due to lags in insurance claims processing) at the time a prediction is made. Conclusion: Clinically derived variables from different time frames exhibit varying levels of importance for predicting self-harm. Variable importance analyses can inform whether and how to implement risk prediction models into clinical practice given real-world data limitations. These analyses be applied more broadly in biomedical informatics research to provide insight into general clinical risk prediction tasks.
引用
收藏
页数:9
相关论文
共 40 条
[1]  
[Anonymous], 2023, Facts about Methane
[2]  
[Anonymous], 2023, Suicide
[3]   The accuracy of suicide statistics: are true suicide deaths misclassified? [J].
Bakst, Shelly S. ;
Braun, Tali ;
Zucker, Inbar ;
Amitai, Ziva ;
Shohat, Tamy .
SOCIAL PSYCHIATRY AND PSYCHIATRIC EPIDEMIOLOGY, 2016, 51 (01) :115-123
[4]   Predicting Suicidal Behavior From Longitudinal Electronic Health Records [J].
Barak-Corren, Yuval ;
Castro, Victor M. ;
Javitt, Solomon ;
Hoffnagle, Alison G. ;
Dai, Yael ;
Perlis, Roy H. ;
Nock, Matthew K. ;
Smoller, Jordan W. ;
Reis, Ben Y. .
AMERICAN JOURNAL OF PSYCHIATRY, 2017, 174 (02) :154-162
[5]   Temporally informed random forests for suicide risk prediction [J].
Bayramli, Ilkin ;
Castro, Victor ;
Barak-Corren, Yuval ;
Madsen, Emily M. ;
Nock, Matthew K. ;
Smoller, Jordan W. ;
Reis, Ben Y. .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2021, 29 (01) :62-71
[6]   Predicting suicide attempt or suicide death following a visit to psychiatric specialty care: A machine learning study using Swedish national registry data [J].
Chen, Qi ;
Zhang-James, Yanli ;
Barnett, Eric J. ;
Lichtenstein, Paul ;
Jokinen, Jussi ;
D'Onofrio, Brian M. ;
Faraone, Stephen, V ;
Larsson, Henrik ;
Fazel, Seena .
PLOS MEDICINE, 2020, 17 (11)
[7]   Racial/Ethnic Disparities in the Performance of Prediction Models for Death by Suicide After Mental Health Visits [J].
Coley, R. Yates ;
Johnson, Eric ;
Simon, Gregory E. ;
Cruz, Maricela ;
Shortreed, Susan M. .
JAMA PSYCHIATRY, 2021, 78 (07) :726-734
[8]   An Examination of Potential Misclassification of Army Suicides: Results from the Army Study to Assess Risk and Resilience in Servicemembers [J].
Cox, Kenneth L. ;
Nock, Matthew K. ;
Biggs, Quinn M. ;
Bornemann, Jennifer ;
Colpe, Lisa J. ;
Dempsey, Catherine L. ;
Heeringa, Steven G. ;
McCarroll, James E. ;
Ng, Tsz Hin ;
Schoenbaum, Michael ;
Ursano, Robert J. ;
Zhang, Bailey G. ;
Benedek, David M. .
SUICIDE AND LIFE-THREATENING BEHAVIOR, 2017, 47 (03) :257-265
[9]   Significance Tests of Feature Relevance for a Black-Box Learner [J].
Dai, Ben ;
Shen, Xiaotong ;
Pan, Wei .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (02) :1898-1911
[10]   Variable Importance and Prediction Methods for Longitudinal Problems with Missing Variables [J].
Diaz, Ivan ;
Hubbard, Alan ;
Decker, Anna ;
Cohen, Mitchell .
PLOS ONE, 2015, 10 (03)