Anderson accelerated preconditioning iterative method for RBF interpolation

被引:1
作者
Liu, Chengzhi [1 ]
Li, Juncheng [1 ]
Hu, Lijuan [1 ]
机构
[1] Hunan Univ Humanities Sci & Technol, Sch Math & Finance, Loud 417000, Peoples R China
基金
中国国家自然科学基金;
关键词
DCPI; Preconditioning technique; Anderson acceleration; Radial basis function; Quasi-interpolation; QUASI-INTERPOLATION; SCATTERED DATA; SURFACE RECONSTRUCTION; KRYLOV METHODS; APPROXIMATION;
D O I
10.1016/j.enganabound.2024.105970
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Traditional RBF interpolation involves solving a linear system, making it computationally expensive for large datasets. Iterative-based quasi-interpolation combines RBF interpolation with iterative methods to enhance accuracy and convergence. To enhance efficiency and accuracy, we in this paper propose a novel method for RBF quasi-interpolation that combines Anderson acceleration with the asynchronous DCPI, termed Anderson-DCPI. The method alternates between the preconditioning iterative method and Anderson extrapolation, aiming to improve convergence rates. We demonstrate the convergence of Anderson-DCPI for positive definite RBF kernel functions and validate its effectiveness through a series of numerical examples.
引用
收藏
页数:10
相关论文
共 39 条
[1]   ITERATIVE PROCEDURES FOR NONLINEAR INTEGRAL EQUATIONS [J].
ANDERSON, DG .
JOURNAL OF THE ACM, 1965, 12 (04) :547-&
[2]   Numerical experiments on the condition number of the interpolation matrices for radial basis functions [J].
Boyd, John P. ;
Gildersleeve, Kenneth W. .
APPLIED NUMERICAL MATHEMATICS, 2011, 61 (04) :443-459
[3]   ON QUASI-INTERPOLATION BY RADIAL BASIS FUNCTIONS WITH SCATTERED CENTERS [J].
BUHMANN, MD ;
DYN, N ;
LEVIN, D .
CONSTRUCTIVE APPROXIMATION, 1995, 11 (02) :239-254
[4]   Shape preserving surface reconstruction using locally anisotropic radial basis function interpolants [J].
Casciola, G. ;
Lazzaro, D. ;
Montefusco, L. B. ;
Morigi, S. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 51 (08) :1185-1198
[5]   Fast Surface Reconstruction Technique Based on Anderson Accelerated I-PIA Method [J].
Dai, Jingguo ;
Yi, Yeqing ;
Liu, Chengzhi .
IEEE ACCESS, 2023, 11 :141500-141511
[6]   On the optimal shape parameter for Gaussian radial basis function finite difference approximation of the Poisson equation [J].
Davydov, Oleg ;
Dang Thi Oanh .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (05) :2143-2161
[7]   A Rescaled Method for RBF Approximation [J].
De Marchi, Stefano ;
Idda, Andrea ;
Santin, Gabriele .
APPROXIMATION THEORY XV, 2017, 201 :39-59
[8]   A new stable basis for radial basis function interpolation [J].
De Marchi, Stefano ;
Santin, Gabriele .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 253 :1-13
[9]   A rational RBF interpolation with conditionally positive definite kernels [J].
Farazandeh, Elham ;
Mirzaei, Davoud .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2021, 47 (05)
[10]  
Fasshauer GE, P CURVES SURFACES AV