Fabrication and Rate Performance of Spherical LiFePO4 Nanoparticles for High-power Lithium Ion Battery

被引:1
作者
Huang, Bing [1 ,2 ]
Zheng, Xiaodong [1 ]
Lu, Mi [1 ]
Zhou, Yiming [2 ]
Chen, Yu [2 ]
Dong, Su [1 ]
Qiao, Yu [1 ]
机构
[1] Binzhou Univ, Clean Energy Res & Dev Ctr, Binzhou 256603, Shandong, Peoples R China
[2] Jiangsu Key Lab New Power Batteries, Nanjing 210046, Jiangsu, Peoples R China
关键词
Lithium-ion batteries; Cathode materials; LiFePO4; Rate performance; ELECTROCHEMICAL PERFORMANCE; CATHODE MATERIALS; SUBSTITUTION;
D O I
10.14447/jnmes.v15i2.71
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The spherical LiFePO4/C nanoparticles are synthesized by modified carbothermal reduction method. XRD patterns show that the LiFePO4 compound is orthorhombic crystal structure. SEM and TEM results indicate that the LiFePO4 composite had a spherical morphology with carbon coated and the particle size is nanoscale. Charge/discharge tests and CV curves show that as-prepared sample exhibits discharge capacity of 153 mAh g(-1) at 0.2 C rate with high electrode reaction reversibility. The discharge capacities of the material are 150, 132, 119, 111, 103 and 96 mAh g(-1) at 1 C, 5 C, 10 C, 15 C, 20 C and 25 C rate and high voltage plateaus are achieved. The good rate performance of the composite is due to its nano particle size and spherical morphology, which reduced the diffusion path of lithium ions and electrons, increased the conductive specific surface and improved the process-ability of the LiFePO4 cathode.
引用
收藏
页码:71 / 74
页数:4
相关论文
共 50 条
[31]   Preparation of 3D micro/mesoporous LiFePO4 composite wrapping with porous graphene oxide for high-power lithium ion battery [J].
Yang, Chun-Chen ;
Hsu, Yu-Hua ;
Shih, Jeng-Ywan ;
Wu, Yi-Shiuan ;
Karuppiah, Chelladurai ;
Liou, Tzong-Horng ;
Lue, Shingjiang Jessie .
ELECTROCHIMICA ACTA, 2017, 258 :773-785
[32]   Study on LiFePO4 Material and the High Power Battery [J].
Wang, Xiaoyue ;
Wu, Borong ;
Yang, Kai ;
Yang, Xuankun ;
Wu, Chuan ;
Wang, Feng ;
Wu, Feng ;
Chen, Shi ;
Li, Gewei .
JOURNAL OF NEW MATERIALS FOR ELECTROCHEMICAL SYSTEMS, 2009, 12 (04) :213-217
[33]   High-power LiFePO4 cathode materials with a continuous nano carbon network for lithium-ion batteries [J].
Chen, Jin-Ming ;
Hsu, Chia-Haw ;
Lin, Yu-Run ;
Hsiao, Mei-Hui ;
Fey, George Ting-Kuo .
JOURNAL OF POWER SOURCES, 2008, 184 (02) :498-502
[34]   ZnFe2O4-C/LiFePO4-CNT: A Novel High-Power Lithium-Ion Battery with Excellent Cycling Performance [J].
Varzi, Alberto ;
Bresser, Dominic ;
von Zamory, Jan ;
Mueller, Franziska ;
Passerini, Stefano .
ADVANCED ENERGY MATERIALS, 2014, 4 (10)
[35]   Structure and electrochemical properties of LiFePO4 as the cathode of lithium ion battery [J].
Lu, JB ;
Tang, ZL ;
Le, B ;
Zhang, ZT ;
Shen, WC .
CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2005, 26 (11) :2093-2096
[36]   A chemically activated graphene-encapsulated LiFePO4 composite for high-performance lithium ion batteries [J].
Ha, Jeonghyun ;
Park, Seung-Keun ;
Yu, Seung-Ho ;
Jin, Aihua ;
Jang, Byungchul ;
Bong, Sungyool ;
Kim, In ;
Sung, Yung-Eun ;
Piao, Yuanzhe .
NANOSCALE, 2013, 5 (18) :8647-8655
[37]   [100]-Oriented LiFePO4 Nanoflakes toward High Rate Li-Ion Battery Cathode [J].
Li, Zhaojin ;
Peng, Zhenzhen ;
Zhang, Hui ;
Hu, Tao ;
Hu, Minmin ;
Zhu, Kongjun ;
Wang, Xiaohui .
NANO LETTERS, 2016, 16 (01) :795-799
[38]   Shape and Size Control of LiFePO4 for High-Performance Lithium-Ion Batteries [J].
Liang, Yachun ;
Wen, Kechun ;
Mao, Yiwu ;
Liu, Zhongping ;
Zhu, Gaolong ;
Yang, Fei ;
He, Weidong .
CHEMELECTROCHEM, 2015, 2 (09) :1227-1237
[39]   Sandwich-like LiFePO4/graphene hybrid nanosheets: in situ catalytic graphitization and their high-rate performance for lithium ion batteries [J].
Guo, Xiangke ;
Fan, Qi ;
Yu, Liang ;
Liang, Jiyuan ;
Ji, Wenxu ;
Peng, Luming ;
Guo, Xuefeng ;
Ding, Weiping ;
Chen, Yanfeng .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (38) :11534-11538
[40]   High performance of LiFePO4 with nitrogen-doped carbon layers for lithium ion batteries [J].
Ou, Junke ;
Yang, Lin ;
Jin, Feng ;
Wu, Shugen ;
Wang, Jiayi .
ADVANCED POWDER TECHNOLOGY, 2020, 31 (03) :1220-1228