A tree seed algorithm with multi-strategy for parameter estimation of solar photovoltaic models

被引:14
作者
Beskirli, Ayse [1 ]
Dag, Idiris [1 ]
Kiran, Mustafa Servet [2 ]
机构
[1] Eskisehir Osmangazi Univ, Dept Comp Engn, Eskisehir, Turkiye
[2] Konya Tech Univ, Fac Comp & Informat Sci, Konya, Turkiye
关键词
PV module; Photovoltaic models; Parameter estimation; Tree seed algorithm; Optimization; DIFFERENTIAL EVOLUTION; OPTIMIZATION ALGORITHM; SWARM OPTIMIZATION; CELL MODELS; IDENTIFICATION; PERFORMANCE; EXTRACTION;
D O I
10.1016/j.asoc.2024.112220
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Tree seed algorithm, which is one of the metaheuristics algorithms recently proposed for the solution of continuous optimization problems, has an effective algorithmic structure inspired by the relation between trees and seeds. At the same time, the use of two different solution generation mechanisms by depending on the control parameter in TSA aims to balance the exploration and exploitation capabilities of the algorithm. However, when the structure of the algorithm is examined in detail, it is seen that there are some disadvantages such as loss of population diversity and getting stuck in local minimums. To overcome these disadvantages in the basic algorithm, three different approaches (self-adaptive weighting mechanism, chaotic elite learning approach and experience-based learning method) were proposed to TSA under the name of multi-strategies in this study. The algorithm improved with these approaches is named as the multi-strategy-based tree seed algorithm (MS-TSA). MS-TSA was first tested on CEC2017 functions. Then MS-TSA was applied to the problems in the CEC2020 competition and compared with the results of the best performing algorithms in this competition. As a result of the comparisons, MS-TSA was found to be a competitive method on solving benchmark functions. Then, parameter estimation of single diode, double diode and photovoltaic module models using the input data of various solar panels was carried out by the MS-TSA. The results obtained with MS-TSA were compared with both the results of the basic TSA and the results of well-known algorithms in the literature. The results obtained are 9.8642E-04, 9.8356E-04, 2.4251E-03, 1.7534E-03 respectively. As a result of the comparative analysis, the lowest RMSE value was obtained by MS-TSA. In addition, comprehensive performance analyzes of the algorithms were made with the convergence curve, boxplots, current (I)- voltage (V) and power (P)- voltage (V) charac- teristic curves obtained according to the experimental results. As a result of the experiments and analyses, MS- TSA was found to be a more successful method than the compared algorithms in parameter estimation of PV models.
引用
收藏
页数:25
相关论文
共 92 条
[1]   Improved Arithmetic Optimization Algorithm for Parameters Extraction of Photovoltaic Solar Cell Single-Diode Model [J].
Abbassi, Abdelkader ;
Ben Mehrez, Rached ;
Bensalem, Yemna ;
Abbassi, Rabeh ;
Kchaou, Mourad ;
Jemli, Mohamed ;
Abualigah, Laith ;
Altalhi, Maryam .
ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (08) :10435-10451
[2]   Identification of unknown parameters of solar cell models: A comprehensive overview of available approaches [J].
Abbassi, Rabeh ;
Abbassi, Abdelkader ;
Jemli, Mohamed ;
Chebbi, Souad .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 90 :453-474
[3]   Parameter extraction of solar photovoltaic models using queuing search optimization and differential evolution [J].
Abd El-Mageed, Amr A. ;
Abohany, Amr A. ;
Saad, Hatem M. H. ;
Sallam, Karam M. .
APPLIED SOFT COMPUTING, 2023, 134
[4]   An Improved Artificial Jellyfish Search Optimizer for Parameter Identification of Photovoltaic Models [J].
Abdel-Basset, Mohamed ;
Mohamed, Reda ;
Chakrabortty, Ripon K. ;
Ryan, Michael J. ;
El-Fergany, Attia .
ENERGIES, 2021, 14 (07)
[5]   Parameter estimation of photovoltaic models using an improved marine predators algorithm [J].
Abdel-Basset, Mohamed ;
El-Shahat, Doaa ;
Chakrabortty, Ripon K. ;
Ryan, Michael .
ENERGY CONVERSION AND MANAGEMENT, 2021, 227
[6]   An Efficient Heap-Based Optimizer for Parameters Identification of Modified Photovoltaic Models [J].
AbdElminaam, Diaa Salama ;
Houssein, Essam H. ;
Said, Mokhtar ;
Oliva, Diego ;
Nabil, Ayman .
AIN SHAMS ENGINEERING JOURNAL, 2022, 13 (05)
[7]   Gradient-based optimization with ranking mechanisms for parameter identification of photovoltaic systems [J].
Ahmadianfar, Iman ;
Gong, Wenyin ;
Heidari, Ali Asghar ;
Golilarz, Noorbakhsh Amiri ;
Samadi-Koucheksaraee, Arvin ;
Chen, Huiling .
ENERGY REPORTS, 2021, 7 :3979-3997
[8]   Parameter Estimation of Photovoltaic Cell/Modules Using Bonobo Optimizer [J].
Al-Shamma'a, Abdullrahman A. ;
Omotoso, Hammed O. ;
Alturki, Fahd A. ;
Farh, Hassan. M. H. ;
Alkuhayli, Abdulaziz ;
Alsharabi, Khalil ;
Noman, Abdullah M. .
ENERGIES, 2022, 15 (01)
[9]   Flower Pollination Algorithm based solar PV parameter estimation [J].
Alam, D. F. ;
Yousri, D. A. ;
Eteiba, M. B. .
ENERGY CONVERSION AND MANAGEMENT, 2015, 101 :410-422
[10]   The combined social engineering particle swarm optimization for real-world engineering problems: A case study of model-based structural health monitoring [J].
Alkayem, Nizar Faisal ;
Cao, Maosen ;
Shen, Lei ;
Fu, Ronghua ;
Sumarac, Dragoslav .
APPLIED SOFT COMPUTING, 2022, 123