On a tree and a path with no geometric simultaneous embedding

被引:17
作者
Angelini, Patrizio [1 ]
Geyer, Markus [2 ]
Kaufmann, Michael [2 ]
Neuwirth, Daniel [2 ]
机构
[1] Dipartimento di Informatica e Automazione, Roma Tre University
[2] Wilhelm-Schickard-Institut für Informatik, Universität Tübingen
关键词
Computational geometry - Trees (mathematics);
D O I
10.7155/jgaa.00250
中图分类号
学科分类号
摘要
Two graphs G1 = (V,E1) and G2 = (V,E2) admit a geometric simultaneous embedding if there exist a set of points P and a bijection M: V → P that induce planar straight-line embeddings both for G1 and for G2. The most prominent problem in this area is the question of whether a tree and a path can always be simultaneously embedded. We answer this question in the negative by providing a counterexample. Additionally, since the counterexample uses disjoint edge sets for the two graphs, we also negatively answer another open question, that is, whether it is possible to simultaneously embed two edge-disjoint trees. Finally, we study the same problem when some constraints on the tree are imposed. Namely, we show that a tree of height 2 and a path always admit a geometric simultaneous embedding. In fact, such a strong constraint is not so far from closing the gap with the instances not admitting any solution, as the tree used in our counterexample has height 4.
引用
收藏
页码:37 / 83
页数:46
相关论文
共 18 条
[1]  
Brandes U., Erten C., Estrella-Balderrama A., Fowler J., Frati F., Geyer M., Gutwenger C., Hong S.-H., Kaufmann M., Kobourov S.G., Liotta G., Mutzel P., Symvonis A., Colored simultaneous geometric embeddings and universal pointsets, Algorithmica, 60, 3, pp. 569-592, (2011)
[2]  
Brass P., Cenek E., Duncan C., Efrat A., Erten C., Ismailescu D., Kobourov S., Lubiw A., Mitchell J., On simultaneous planar graph embeddings, Comp. Geom., 36, 2, pp. 117-130, (2007)
[3]  
Cabello S., van Kreveld M., Liotta G., Meijer H., Speckmann B., Verbeek K., Geometric simultaneous embeddings of a graph and a matching, J. Graph Alg. Appl., 15, 1, pp. 79-96, (2011)
[4]  
di Giacomo E., Didimo W., van Kreveld M., Liotta G., Speckmann B., Matched drawings of planar graphs, J. Graph Alg. Appl., 13, 3, pp. 423-445, (2009)
[5]  
Erten C., Kobourov S.G., Simultaneous embedding of planar graphs with few bends, J. Graph Alg. Appl., 9, 3, pp. 347-364, (2005)
[6]  
Estrella-Balderrama A., Fowler J., Kobourov S.G., Characterization of unlabeled level planar trees, Comp. Geom., 42, 6-7, pp. 704-721, (2009)
[7]  
Fowler J., Junger M., Kobourov S.G., Schulz M., Characterizations of restricted pairs of planar graphs allowing simultaneous embedding with fixed edges, Comput. Geom., 44, 8, pp. 385-398, (2011)
[8]  
Fowler J., Kobourov S., Characterization of unlabeled level planar graphs, GD '07, Volume 4875 of LNCS, pp. 37-49, (2007)
[9]  
Fowler J., Kobourov S., Minimum level nonplanar patterns for trees, GD '07, Volume 4875 of LNCS, pp. 69-75, (2007)
[10]  
Frati F., Embedding graphs simultaneously with fixed edges, GD '06, Volume 4372 of LNCS, pp. 108-113, (2006)