Exploration of Imbalanced Regression in state-of-health estimation of Lithium-ion batteries

被引:0
|
作者
Zhao, Zhibin [1 ]
Liu, Bingchen [1 ]
Wang, Fujin [1 ]
Zheng, Shiyu [1 ]
Yu, Qiuyu [1 ]
Zhai, Zhi [1 ]
Chen, Xuefeng [1 ]
机构
[1] Xi An Jiao Tong Univ, Natl Key Lab Aerosp Power Syst & Plasma Technol, Xian 710049, Peoples R China
关键词
Lithium-ion battery; Imbalanced regression; State-of-health (SOH) estimation; MODEL; DEGRADATION; CHALLENGES; CHARGE;
D O I
10.1016/j.est.2024.114542
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The state of health (SOH) estimation for lithium-ion batteries based on deep learning (DL) has made great progress. However, due to different electrochemical compositions of lithium-ion batteries, different ways of conducting experiments and other factors, the degradation process of some batteries shows longer early degradation time and shorter later degradation time, resulting in a long-tailed distribution of degradation data. This leads to the problem of data imbalance in SOH estimation tasks, which affects the accuracy of SOH estimation. This article explores the long-tailed distribution phenomenon in the field of batteries and the corresponding imbalanced regression problem it brings to the estimation of battery SOH. In addition, a method for improving model performance is proposed. Specifically, we use a quadratic interpolation and standardization method to analyze the battery data to ensure the consistency of data features. By discretized analysis of continuous problems, the label distribution smoothing (LDS) method is applied to deep neural networks to analyze and solve this imbalanced regression problem. By convolution processing with the kernel function and label distribution, the weights corresponding to different labels are calculated, which improves the estimation accuracy. We conducted battery aging experiments and verified that the degradation data follows a long-tailed distribution. The effectiveness of the final method was validated on our experimental data and a publicly available dataset.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Open access dataset, code library and benchmarking deep learning approaches for state-of-health estimation of lithium-ion batteries
    Wang, Fujin
    Zhai, Zhi
    Liu, Bingchen
    Zheng, Shiyu
    Zhibin, Zhao
    Chen, Xuefeng
    JOURNAL OF ENERGY STORAGE, 2024, 77
  • [42] Online state-of-health prediction of lithium-ion batteries with limited labeled data
    Yu, Jinsong
    Yang, Jie
    Wu, Yao
    Tang, Diyin
    Dai, Jing
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (14) : 11345 - 11353
  • [43] A model for state-of-health estimation of lithium ion batteries based on charging profiles
    Bian, Xiaolei
    Liu, Longcheng
    Yan, Jinying
    ENERGY, 2019, 177 : 57 - 65
  • [44] State of Health Estimation for Lithium-Ion Batteries
    Kong, XiangRong
    Bonakdarpour, Arman
    Wetton, Brian T.
    Wilkinson, David P.
    Gopaluni, Bhushan
    IFAC PAPERSONLINE, 2018, 51 (18): : 667 - 671
  • [45] A Comprehensive Review on Data-Driven Methods of Lithium-Ion Batteries State-of-Health Forecasting
    Pham, Thien
    Bui, Hung
    Nguyen, Mao
    Pham, Quang
    Vu, Vinh
    Le, Triet
    Quan, Tho
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2025, 15 (02)
  • [46] A review of state-of-health estimation for lithium-ion battery packs
    Li, Qingwei
    Song, Renjie
    Wei, Yongqiang
    JOURNAL OF ENERGY STORAGE, 2025, 118
  • [47] Gaussian Process Regression based State of Health Estimation of Lithium-Ion Batteries using Indirect Battery Health Indicators*
    Reddy, Duggireddy Yashwanth
    Routh, Bikky
    Patra, Amit
    Mukhopadhyay, Siddhartha
    2021 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2021,
  • [48] State-of-Health Estimation for Lithium-Ion Batteries Based on Wiener Process With Modeling the Relaxation Effect
    Xu, Xiaodong
    Yu, Chuanqiang
    Tang, Shengjin
    Sun, Xiaoyan
    Si, Xiaosheng
    Wu, Lifeng
    IEEE ACCESS, 2019, 7 : 105186 - 105201
  • [49] On-Board State-of-Health Estimation at a Wide Ambient Temperature Range in Lithium-Ion Batteries
    Wang, Tiansi
    Pei, Lei
    Wang, Tingting
    Lu, Rengui
    Zhu, Chunbo
    ENERGIES, 2015, 8 (08): : 8467 - 8481
  • [50] State-of-health estimation for lithium-ion batteries using relaxation voltage under dynamic conditions
    Ke, Xue
    Hong, Huawei
    Zheng, Peng
    Zhang, Shuling
    Zhu, Lingling
    Li, Zhicheng
    Cai, Jiaxin
    Fan, Peixiao
    Yang, Jun
    Wang, Jun
    Li, Li
    Kuai, Chunguang
    Guo, Yuzheng
    JOURNAL OF ENERGY STORAGE, 2024, 100