Exploration of Imbalanced Regression in state-of-health estimation of Lithium-ion batteries

被引:0
|
作者
Zhao, Zhibin [1 ]
Liu, Bingchen [1 ]
Wang, Fujin [1 ]
Zheng, Shiyu [1 ]
Yu, Qiuyu [1 ]
Zhai, Zhi [1 ]
Chen, Xuefeng [1 ]
机构
[1] Xi An Jiao Tong Univ, Natl Key Lab Aerosp Power Syst & Plasma Technol, Xian 710049, Peoples R China
关键词
Lithium-ion battery; Imbalanced regression; State-of-health (SOH) estimation; MODEL; DEGRADATION; CHALLENGES; CHARGE;
D O I
10.1016/j.est.2024.114542
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The state of health (SOH) estimation for lithium-ion batteries based on deep learning (DL) has made great progress. However, due to different electrochemical compositions of lithium-ion batteries, different ways of conducting experiments and other factors, the degradation process of some batteries shows longer early degradation time and shorter later degradation time, resulting in a long-tailed distribution of degradation data. This leads to the problem of data imbalance in SOH estimation tasks, which affects the accuracy of SOH estimation. This article explores the long-tailed distribution phenomenon in the field of batteries and the corresponding imbalanced regression problem it brings to the estimation of battery SOH. In addition, a method for improving model performance is proposed. Specifically, we use a quadratic interpolation and standardization method to analyze the battery data to ensure the consistency of data features. By discretized analysis of continuous problems, the label distribution smoothing (LDS) method is applied to deep neural networks to analyze and solve this imbalanced regression problem. By convolution processing with the kernel function and label distribution, the weights corresponding to different labels are calculated, which improves the estimation accuracy. We conducted battery aging experiments and verified that the degradation data follows a long-tailed distribution. The effectiveness of the final method was validated on our experimental data and a publicly available dataset.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] State-of-Health Estimation for Lithium-Ion Batteries Based on Wiener Process With Modeling the Relaxation Effect
    Xu, Xiaodong
    Yu, Chuanqiang
    Tang, Shengjin
    Sun, Xiaoyan
    Si, Xiaosheng
    Wu, Lifeng
    IEEE ACCESS, 2019, 7 : 105186 - 105201
  • [42] On-Board State-of-Health Estimation at a Wide Ambient Temperature Range in Lithium-Ion Batteries
    Wang, Tiansi
    Pei, Lei
    Wang, Tingting
    Lu, Rengui
    Zhu, Chunbo
    ENERGIES, 2015, 8 (08): : 8467 - 8481
  • [43] State-of-health Estimation of Lithium-ion Batteries Based on EMD-DO-Elman and GRA
    Qian, Yucun
    Yang, Bo
    Zheng, Ruyi
    Liang, Boxiao
    Wu, Pengyu
    Dianwang Jishu/Power System Technology, 2024, 48 (09): : 3695 - 3704
  • [44] State-of-health estimation for lithium-ion batteries using relaxation voltage under dynamic conditions
    Ke, Xue
    Hong, Huawei
    Zheng, Peng
    Zhang, Shuling
    Zhu, Lingling
    Li, Zhicheng
    Cai, Jiaxin
    Fan, Peixiao
    Yang, Jun
    Wang, Jun
    Li, Li
    Kuai, Chunguang
    Guo, Yuzheng
    JOURNAL OF ENERGY STORAGE, 2024, 100
  • [45] A novel data-model fusion state-of-health estimation approach for lithium-ion batteries
    Ma, Zeyu
    Yang, Ruixin
    Wang, Zhenpo
    APPLIED ENERGY, 2019, 237 : 836 - 847
  • [46] Constant current charging time based fast state-of-health estimation for lithium-ion batteries
    Lin, Chuanping
    Xu, Jun
    Shi, Mingjie
    Mei, Xuesong
    ENERGY, 2022, 247
  • [47] Advanced machine learning techniques for State-of-Health estimation in lithium-ion batteries: A comparative study
    Sedlarik, Marek
    Vyroubal, Petr
    Capkova, Dominika
    Omerdic, Edin
    Rae, Mitchell
    Macak, Martin
    Sedina, Martin
    Kazda, Tomas
    ELECTROCHIMICA ACTA, 2025, 524
  • [48] A fast state-of-health estimation method using single linear feature for lithium-ion batteries
    Shi, Mingjie
    Xu, Jun
    Lin, Chuanping
    Mei, Xuesong
    ENERGY, 2022, 256
  • [49] Review on state-of-health of lithium-ion batteries: Characterizations, estimations and applications
    Yang, Sijia
    Zhang, Caiping
    Jiang, Jiuchun
    Zhang, Weige
    Zhang, Linjing
    Wang, Yubin
    JOURNAL OF CLEANER PRODUCTION, 2021, 314
  • [50] State-of-Charge and State-of-Health Estimating Method for Lithium-Ion Batteries
    Wu, Tsung-Hsi
    Wang, Jhih-Kai
    Moo, Chin-Sien
    Kawamura, Atsuo
    2016 IEEE 17TH WORKSHOP ON CONTROL AND MODELING FOR POWER ELECTRONICS (COMPEL), 2016,