Exploration of Imbalanced Regression in state-of-health estimation of Lithium-ion batteries

被引:0
|
作者
Zhao, Zhibin [1 ]
Liu, Bingchen [1 ]
Wang, Fujin [1 ]
Zheng, Shiyu [1 ]
Yu, Qiuyu [1 ]
Zhai, Zhi [1 ]
Chen, Xuefeng [1 ]
机构
[1] Xi An Jiao Tong Univ, Natl Key Lab Aerosp Power Syst & Plasma Technol, Xian 710049, Peoples R China
关键词
Lithium-ion battery; Imbalanced regression; State-of-health (SOH) estimation; MODEL; DEGRADATION; CHALLENGES; CHARGE;
D O I
10.1016/j.est.2024.114542
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The state of health (SOH) estimation for lithium-ion batteries based on deep learning (DL) has made great progress. However, due to different electrochemical compositions of lithium-ion batteries, different ways of conducting experiments and other factors, the degradation process of some batteries shows longer early degradation time and shorter later degradation time, resulting in a long-tailed distribution of degradation data. This leads to the problem of data imbalance in SOH estimation tasks, which affects the accuracy of SOH estimation. This article explores the long-tailed distribution phenomenon in the field of batteries and the corresponding imbalanced regression problem it brings to the estimation of battery SOH. In addition, a method for improving model performance is proposed. Specifically, we use a quadratic interpolation and standardization method to analyze the battery data to ensure the consistency of data features. By discretized analysis of continuous problems, the label distribution smoothing (LDS) method is applied to deep neural networks to analyze and solve this imbalanced regression problem. By convolution processing with the kernel function and label distribution, the weights corresponding to different labels are calculated, which improves the estimation accuracy. We conducted battery aging experiments and verified that the degradation data follows a long-tailed distribution. The effectiveness of the final method was validated on our experimental data and a publicly available dataset.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] State-of-Health Estimation for Lithium-Ion Batteries Based on the Multi-Island Genetic Algorithm and the Gaussian Process Regression
    Wang, Zhenpo
    Ma, Jun
    Zhang, Lei
    IEEE ACCESS, 2017, 5 : 21286 - 21295
  • [32] State-of-Health Estimation With Anomalous Aging Indicator Detection of Lithium-Ion Batteries Using Regression Generative Adversarial Network
    Zhao, Guangcai
    Zhang, Chenghui
    Duan, Bin
    Shang, Yunlong
    Kang, Yongzhe
    Zhu, Rui
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2023, 70 (03) : 2685 - 2695
  • [33] State of Health Estimation for Lithium-Ion Batteries
    Kong, XiangRong
    Bonakdarpour, Arman
    Wetton, Brian T.
    Wilkinson, David P.
    Gopaluni, Bhushan
    IFAC PAPERSONLINE, 2018, 51 (18): : 667 - 671
  • [34] State-of-health estimation for lithium-ion batteries with hierarchical feature construction and auto-configurable Gaussian process regression
    Jin, Haiyan
    Cui, Ningmin
    Cai, Lei
    Meng, Jinhao
    Li, Junxin
    Peng, Jichang
    Zhao, Xinchao
    ENERGY, 2023, 262
  • [35] State-of-Health prediction of lithium-ion batteries based on a low dimensional Gaussian Process Regression
    Pohlmann, Sebastian
    Mashayekh, Ali
    Stroebl, Florian
    Karnehm, Dominic
    Kuder, Manuel
    Neve, Antje
    Weyh, Thomas
    JOURNAL OF ENERGY STORAGE, 2024, 88
  • [36] A review of state-of-health estimation for lithium-ion battery packs
    Li, Qingwei
    Song, Renjie
    Wei, Yongqiang
    JOURNAL OF ENERGY STORAGE, 2025, 118
  • [37] State-of-charge and state-of-health estimation for lithium-ion batteries based on dynamic impedance technique
    Hung, Min-Hsuan
    Lin, Chang-Hua
    Lee, Liang-Cheng
    Wang, Chien-Ming
    JOURNAL OF POWER SOURCES, 2014, 268 : 861 - 873
  • [38] A review of machine learning state-of-charge and state-of-health estimation algorithms for lithium-ion batteries
    Ren, Zhong
    Du, Changqing
    ENERGY REPORTS, 2023, 9 : 2993 - 3021
  • [39] Evolving Elman neural networks based state-of-health estimation for satellite lithium-ion batteries
    Zhang, Dengfeng
    Li, Weichen
    Han, Xiaodong
    Lu, Baochun
    Zhang, Quanling
    Bo, Cuimei
    JOURNAL OF ENERGY STORAGE, 2023, 59
  • [40] Hybrid deep neural network with dimension attention for state-of-health estimation of Lithium-ion Batteries
    Bao, Xinyuan
    Chen, Liping
    Lopes, Antonio M.
    Li, Xin
    Xie, Siqiang
    Li, Penghua
    Chen, YangQuan
    ENERGY, 2023, 278