Exploration of Imbalanced Regression in state-of-health estimation of Lithium-ion batteries

被引:0
|
作者
Zhao, Zhibin [1 ]
Liu, Bingchen [1 ]
Wang, Fujin [1 ]
Zheng, Shiyu [1 ]
Yu, Qiuyu [1 ]
Zhai, Zhi [1 ]
Chen, Xuefeng [1 ]
机构
[1] Xi An Jiao Tong Univ, Natl Key Lab Aerosp Power Syst & Plasma Technol, Xian 710049, Peoples R China
关键词
Lithium-ion battery; Imbalanced regression; State-of-health (SOH) estimation; MODEL; DEGRADATION; CHALLENGES; CHARGE;
D O I
10.1016/j.est.2024.114542
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The state of health (SOH) estimation for lithium-ion batteries based on deep learning (DL) has made great progress. However, due to different electrochemical compositions of lithium-ion batteries, different ways of conducting experiments and other factors, the degradation process of some batteries shows longer early degradation time and shorter later degradation time, resulting in a long-tailed distribution of degradation data. This leads to the problem of data imbalance in SOH estimation tasks, which affects the accuracy of SOH estimation. This article explores the long-tailed distribution phenomenon in the field of batteries and the corresponding imbalanced regression problem it brings to the estimation of battery SOH. In addition, a method for improving model performance is proposed. Specifically, we use a quadratic interpolation and standardization method to analyze the battery data to ensure the consistency of data features. By discretized analysis of continuous problems, the label distribution smoothing (LDS) method is applied to deep neural networks to analyze and solve this imbalanced regression problem. By convolution processing with the kernel function and label distribution, the weights corresponding to different labels are calculated, which improves the estimation accuracy. We conducted battery aging experiments and verified that the degradation data follows a long-tailed distribution. The effectiveness of the final method was validated on our experimental data and a publicly available dataset.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] An Improved LSTNet Approach for State-of-Health Estimation of Automotive Lithium-Ion Battery
    Ping, Fan
    Miao, Xiaodong
    Yu, Hu
    Xun, Zhiwen
    ELECTRONICS, 2023, 12 (12)
  • [22] Constant current charging time based fast state-of-health estimation for lithium-ion batteries
    Lin, Chuanping
    Xu, Jun
    Shi, Mingjie
    Mei, Xuesong
    ENERGY, 2022, 247
  • [23] A novel data-model fusion state-of-health estimation approach for lithium-ion batteries
    Ma, Zeyu
    Yang, Ruixin
    Wang, Zhenpo
    APPLIED ENERGY, 2019, 237 : 836 - 847
  • [24] State-of-Health Estimation Based on Differential Temperature for Lithium Ion Batteries
    Tian, Jinpeng
    Xiong, Rui
    Shen, Weixiang
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2020, 35 (10) : 10363 - 10373
  • [25] State Of Health Estimation of Lithium-ion Batteries Based On Regression Techniques
    Azizi, Chaima
    Ben Ali, Jaouher
    2017 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND DIAGNOSIS (ICCAD), 2017, : 493 - 498
  • [26] A review on rapid state of health estimation of lithium-ion batteries in electric vehicles
    Wang, Zuolu
    Zhao, Xiaoyu
    Fu, Lei
    Zhen, Dong
    Gu, Fengshou
    Ball, Andrew D.
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2023, 60
  • [27] State of Health Estimation Methods for Lithium-Ion Batteries
    Nuroldayeva, Gulzat
    Serik, Yerkin
    Adair, Desmond
    Uzakbaiuly, Berik
    Bakenov, Zhumabay
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2023, 2023 (NA)
  • [28] State of health prediction of lithium-ion batteries: Multiscale logic regression and Gaussian process regression ensemble
    Yu, Jianbo
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2018, 174 : 82 - 95
  • [29] State of health estimation for lithium-ion batteries with Bayesian optimized Gaussian process regression
    Ye, Li-hua
    He, Zhou
    Ke, Cheng-long
    Cheng, Xing
    Zhao, Xu
    Zhang, Zi-xing
    Shi, Ai-ping
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2024,
  • [30] State-of-health estimation for lithium-ion batteries based on Kullback-Leibler divergence and a retentive network☆
    Chen, Guanxu
    Yang, Fangfang
    Peng, Weiwen
    Fan, Yuqian
    Lyu, Ximin
    APPLIED ENERGY, 2024, 376