In the process of rapid development of road engineering, the problems caused by subgrade permanent deformation (PD) haven't been completely solved. Clarifying the evaluation and control methods for subgrade PD under long-term cyclic loading can ensure the durable and stable operation of road engineering. Firstly, this paper explored the main conditions and setting methods for PD test of subgrade soil. Subsequently, the constitutive models based on classical soil mechanics and empirical models based on experimental phenomena were sorted out. Next, the calculation process, verification methods, and evolvement rules of subgrade PD were summarized. Then, three methods for controlling subgrade PD were discussed, including critical dynamic stress, structural measures, and failure probability. Through analysis of research progress, it is found that there are four main problems with subgrade PD, namely inaccurate test methods, incomplete prediction models, unreasonable calculation theories, and unclear control standards. The specific problems and potential challenges in each aspect are elaborated in detail. Four prospects for future research are also given. Firstly, it is necessary to establish a static earth pressure coefficients database of subgrade soil to form a unified test method for PD of subgrade soil. Secondly, the influence rules and internal mechanisms of loading action duration and intermittent duration on PD of subgrade soil should be clarified, and the mechanical model for PD of subgrade soil should be derived under the theoretical system of element model and fractional-order calculus. Thirdly, the calculation method of subgrade humidity field considering the influence of dynamic loading should be innovated, and then the fully coupled calculation method of subgrade PD under humidification action based on the mechanical model for PD of subgrade soil should be established, and a comprehensive verification platform of subgrade that can scientifically simulate the climate environment and stress state should be developed. Fourthly, a control standard for subgrade PD based on pavement performance requirements should be determined with reliability as the goal, and then the corresponding relationship between structural failure and material deformation should be quantified, and the granular materials improvement layer structure design method for subgrade performance control should be optimized. © 2024 Chang'an University. All rights reserved.