Speckle noise reduction for digital holographic images using Swin Transformer

被引:0
作者
Xie, Zhaoqian [1 ]
Chen, Li [1 ,2 ]
Chen, Honghui [1 ]
Wen, Kunhua [1 ]
Guo, Junwei [1 ]
机构
[1] Guangdong Univ Technol, Sch Phys & Optoelect Engn, Guangzhou 510006, Peoples R China
[2] Guangdong Univ Technol, Guangdong Prov Key Lab Informat Photon Technol, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
Speckle Noise; Digital Holography; Deep Learning; Transformer; IMPROVEMENT; TOMOGRAPHY;
D O I
10.1016/j.optlaseng.2024.108605
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We introduce an innovative approach for reducing speckle noise in holographic reconstruction images utilizing the Transformer architecture. This approach not only effectively captures speckle noise from digital holographic images but also better preserves details in images, owing to the characteristics of the Swin Transformer in globally and locally capturing relationships between image features. The network is trained using a large dataset with a distribution similar to real speckle noise. Experimental results demonstrate outstanding denoising performance of the proposed method and effectively preserving the details.
引用
收藏
页数:7
相关论文
共 32 条
  • [1] Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter
    Adler, DC
    Ko, TH
    Fujimoto, JG
    [J]. OPTICS LETTERS, 2004, 29 (24) : 2878 - 2880
  • [2] NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study
    Agustsson, Eirikur
    Timofte, Radu
    [J]. 2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, : 1122 - 1131
  • [3] Non-Local Means Denoising
    Buades, Antoni
    Coll, Bartomeu
    Morel, Jean-Michel
    [J]. IMAGE PROCESSING ON LINE, 2011, 1 : 208 - 212
  • [4] CHARBONNIER P, 1994, IEEE IMAGE PROC, P168
  • [5] Cell refractive index tomography by digital holographic microscopy
    Charrière, F
    Marian, A
    Montfort, F
    Kuehn, J
    Colomb, T
    Cuche, E
    Marquet, P
    Depeursinge, C
    [J]. OPTICS LETTERS, 2006, 31 (02) : 178 - 180
  • [6] Image denoising with block-matching and 3D filtering
    Dabov, Kostadin
    Foi, Alessandro
    Katkovnik, Vladimir
    Egiazarian, Karen
    [J]. IMAGE PROCESSING: ALGORITHMS AND SYSTEMS, NEURAL NETWORKS, AND MACHINE LEARNING, 2006, 6064
  • [7] Dosovitskiy A, 2021, Arxiv, DOI arXiv:2010.11929
  • [8] Gobl R., 2022, arXiv
  • [9] Han Q, 2022, Arxiv, DOI [arXiv:2106.04263, 10.48550/arXiv.2106.04263]
  • [10] Reduction of speckle noise in holographic images using spatial jittering in numerical reconstructions
    Haouat, Mohamed
    Garcia-Sucerquia, Jorge
    Kellou, Abdelhamid
    Picart, Pascal
    [J]. OPTICS LETTERS, 2017, 42 (06) : 1047 - 1050