Dirac's time-dependent variational principle to phase transition of ground state in the quantum double-well model

被引:0
|
作者
Department of Information and Computing Science, Guangxi University of Technology, 268 Donghuan Road, Liuzhou, 545006 Guangxi, China [1 ]
不详 [2 ]
不详 [3 ]
机构
来源
Phys B Condens Matter | 1600年 / 8-11卷 / 1518-1522期
关键词
Compendex;
D O I
暂无
中图分类号
学科分类号
摘要
Ground state
引用
收藏
相关论文
共 50 条
  • [21] Tailoring of motional states in double-well potentials by time-dependent processes
    Harkonen, Kari
    Karki, Ollijuhani
    Suominen, Kalle-Antti
    PHYSICAL REVIEW A, 2006, 74 (04):
  • [22] Quantum phase transition of ultracold bosons in double-well optical lattices
    Danshita, I.
    Williams, J. E.
    de Melo, C. A. R. Sa
    Clark, C. W.
    LASER PHYSICS, 2008, 18 (03) : 318 - 321
  • [23] NOON state of Bose atoms in the double-well potential via an excited-state quantum phase transition
    Bychek, A. A.
    Maksimov, D. N.
    Kolovsky, A. R.
    PHYSICAL REVIEW A, 2018, 97 (06)
  • [24] Path integral Monte Carlo study of the interacting quantum double-well model: Quantum phase transition and phase diagram
    Kim, Dong-Hee
    Lin, Yu-Cheng
    Rieger, Heiko
    PHYSICAL REVIEW E, 2007, 75 (01):
  • [25] Phase transition in quantum tunneling and exact statistical mechanics for a model of parameterized double-well potential
    Naha Nzoupe, Fernand
    Dikande, Alain Moise
    Tchawoua, Clement
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (16) : 12221 - 12235
  • [26] Josephson tunnelling of a phase-imprinted Bose-Einstein condensate in a time-dependent double-well potential
    Sakellari, E
    Proukakis, NP
    Leadbeater, M
    Adams, CS
    NEW JOURNAL OF PHYSICS, 2004, 6
  • [27] Gaussian time-dependent variational principle for the Bose-Hubbard model
    Guaita, Tommaso
    Hack, Lucas
    Shi, Tao
    Hubig, Claudius
    Demler, Eugene
    Cirac, J. Ignacio
    PHYSICAL REVIEW B, 2019, 100 (09)
  • [28] Time-Dependent Variational Principle for Open Quantum Systems with Artificial Neural Networks
    Reh, Moritz
    Schmitt, Markus
    Gaerttner, Martin
    PHYSICAL REVIEW LETTERS, 2021, 127 (23)
  • [29] A TIME-DEPENDENT ANALOG OF THE RITZ VARIATIONAL PRINCIPLE IN NONRELATIVISTIC QUANTUM-MECHANICS
    SIGMUND, P
    BASBAS, G
    PHYSICA SCRIPTA, 1985, 32 (05): : 482 - 485
  • [30] Dynamics of the Hubbard model: A general approach by the time-dependent variational principle
    Montorsi, A
    Penna, V
    PHYSICAL REVIEW B, 1997, 55 (13) : 8226 - 8239