Efficient hybrid rumor mitigation in dynamic and multilayer online social networks

被引:0
|
作者
Hosni, Adil Imad Eddine [1 ]
Baira, Islam [1 ]
Merini, Hichame [1 ]
Bey, Kadda Beghdad [1 ]
机构
[1] Ecole Mil Polytech, Dept Comp Sci, Algiers 16046, Algeria
关键词
Online social networks; Rumor mitigation; Dynamic multilayer networks; Hybrid strategies; Heterogeneous information spread; Influence minimization; Probabilistic network inference; LINK PREDICTION; PROPAGATION; SPREAD;
D O I
10.1007/s13278-024-01381-z
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The proliferation of malicious information, including fake news and rumors, within Online Social Networks (OSNs) has prompted considerable research into strategies that mitigate the adverse effects of such content. This study focuses on the problem of minimizing rumor influence in dynamic, multilayer OSNs. Given the rapid evolution of OSNs and their expanding functionalities, we introduce an innovative OSN representation as a dynamic multilayer network, incorporating heterogeneous propagation models across layers to effectively capture the complex structure of OSNs. To address the challenge, we propose a hybrid approach that integrates two strategies: the Node or Link Blocking Strategy (BNLS) and the Truth Campaign Strategy (TCS). This integration allows us to identify an optimal set of nodes for limiting rumor spread through a probabilistic framework grounded in network inference. We introduce a hybrid approach that combines BNLS and TCS for Rumor Influence Minimization, seeking to identify two optimal node sets, K+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K<^>+$$\end{document} and K-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K<^>-$$\end{document}, to limit rumor spread and support truth campaigns, respectively. This selection is made under the constraint |K+|+|K-|<= K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|K<^>+| + |K<^>-| \le K$$\end{document}, where K is a predefined budget. By leveraging the strengths of both strategies, our approach minimizes rumor influence effectively. Our method presents several advantages: it captures (1) the dynamic and multilayered representation of OSNs, (2) the evolving structural properties of networks, and (3) the temporal aspects of rumor propagation. To implement this solution, we develop the Hybrid Greedy Algorithm (HGA), which provides a (1-1/e)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1-1/\textit{e})$$\end{document}-approximation guarantee. Systematic experiments on both synthetic and real-world datasets across single and multilayer networks demonstrate the superior performance of our approach. The results indicate that our hybrid strategy outperforms recent state-of-the-art methods, validating its effectiveness for rumor influence minimization.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Hybrid Approach for Rumor Influence Minimization in Dynamic Multilayer Online Social Networks
    Hosni, Adil Imad Eddine
    Hafiani, Khaled Aimen
    Chenoui, Abderrahim
    Bey, Kadda Beghdad
    ADVANCES IN COMPUTING SYSTEMS AND APPLICATIONS, 2022, 513 : 275 - 285
  • [2] Modeling Rumor Spreading with Repeated Propagations in Multilayer Online Social Networks
    Han, Qiyi
    You, Lei
    Miao, Fang
    Fan, Wenjie
    2018 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2018,
  • [3] An Efficient Randomized Algorithm for Rumor Blocking in Online Social Networks
    Tong, Guangmo
    Wu, Weili
    Guo, Ling
    Li, Deying
    Liu, Cong
    Liu, Bin
    Du, Ding-Zhu
    IEEE INFOCOM 2017 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS, 2017,
  • [4] An Efficient Randomized Algorithm for Rumor Blocking in Online Social Networks
    Tong, Guangmo
    Wu, Weili
    Guo, Ling
    Li, Deying
    Liu, Cong
    Liu, Bin
    Du, Ding-Zhu
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2020, 7 (02): : 845 - 854
  • [5] DDSEIR: A Dynamic Rumor Spreading Model in Online Social Networks
    Li, Li
    Xia, Hui
    Zhang, Rui
    Li, Ye
    WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS, WASA 2019, 2019, 11604 : 596 - 604
  • [6] Hybrid Rumor Debunking in Online Social Networks: A Differential Game Approach
    Gan, Chenquan
    Yang, Wei
    Zhu, Qingyi
    Li, Meng
    Jain, Deepak Kumar
    Struc, Vitomir
    Huang, Da-Wen
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2025, 55 (04): : 2513 - 2527
  • [7] DARIM: Dynamic Approach for Rumor Influence Minimization in Online Social Networks
    Hosni, Adil Imad Eddine
    Li, Kan
    Ahmad, Sadique
    NEURAL INFORMATION PROCESSING (ICONIP 2019), PT II, 2019, 11954 : 619 - 630
  • [8] Rumor Restriction in Online Social Networks
    Li, Songsong
    Zhu, Yuqing
    Li, Deying
    Kim, Donghyun
    Huang, Hejiao
    2013 IEEE 32ND INTERNATIONAL PERFORMANCE COMPUTING AND COMMUNICATIONS CONFERENCE (IPCCC), 2013,
  • [9] Bayesian inference and ant colony optimization for multi-rumor mitigation in online social networks
    Parimi, Priyanka
    Rout, Rashmi Ranjan
    Soft Computing, 2024, 28 (17-18) : 9681 - 9692
  • [10] Detecting rumor outbreaks in online social networks
    Fraszczak, Damian
    SOCIAL NETWORK ANALYSIS AND MINING, 2023, 13 (01)