A note on the eigenvalues of a Sylvester-Kac type matrix with off-diagonal biperiodic perturbations

被引:0
作者
Du, Zhibin [1 ]
da Fonseca, Carlos M. [2 ,3 ,4 ]
机构
[1] South China Normal Univ, Sch Artificial Intelligence, Foshan 528225, Guangdong, Peoples R China
[2] Kuwait Coll Sci & Technol, Safat 13133, Kuwait
[3] Tech Univ Sofia, Fac Appl Math & Informat, Kliment Ohridski Blvd 8, Sofia 1000, Bulgaria
[4] Univ Deusto, Chair Computat Math, Bilbao 48007, Spain
关键词
Sylvester-Kac matrix; Tridiagonal matrix; Eigenvalues; TRIDIAGONAL MATRICES; EIGENVECTORS; DETERMINANT; PROPERTY; SPECTRUM; VALUES;
D O I
10.1016/j.cam.2024.116429
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Sylvester-Kac matrix is a tridiagonal matrix with integer entries having a certain kind of regular pattern. Its eigenvalues and eigenvectors can be computed analytically, so it can be used for test matrices for eigenvalue solvers. Among the extensions of the Sylvester-Kac matrix, one of the most challenging is when a given constant is added biperiodically to the non-zero off- diagonal entries. In this note we provide a combinatorial proof for determining the eigenvalues of such matrices. We also discuss a possible biperiodic extension.
引用
收藏
页数:6
相关论文
共 43 条