Spatial-Temporal Traffic Prediction With an Interactive Spatial-Enhanced Graph Convolutional Network Model

被引:0
|
作者
Li, Qin [1 ]
Xu, Pai [1 ]
Yang, Xuan [1 ]
Wu, Yuankai [2 ]
He, Hongwen [3 ]
He, Deqiang [1 ]
机构
[1] Guangxi Univ, Sch Mech Engn, Nanning 530004, Peoples R China
[2] Sichuan Univ, Coll Comp Sci, Chengdu 610064, Peoples R China
[3] Beijing Inst Technol, Sch Mech Engn, Beijing 100000, Peoples R China
基金
中国国家自然科学基金;
关键词
Correlation; Roads; Predictive models; Feature extraction; Convolution; Time series analysis; Data models; Accuracy; Vehicle dynamics; Spatiotemporal phenomena; Traffic prediction; graph convolutional network; multi-scale temporal correlations; dynamic spatial correlations;
D O I
10.1109/TITS.2024.3467172
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Accurate traffic prediction is crucial for effective traffic control and risk assessment. Traffic data exhibits a distinct nature, characterized by the interplay of swift, sudden short-term variations and enduring, extended long-term trends within specific regions. This intricate intermingling and interaction give rise to diverse spatial propagation patterns. Successful traffic prediction models necessitate mastering multi-scale temporal and dynamic spatial correlations, as well as their intricate interrelationships. In this study, we present a novel spatial-temporal traffic prediction framework named Interactive Spatial-Enhanced Graph Convolution Network (ISGCN). Our key innovation lies in the introduction of a novel dynamic graph convolution module, which not only captures overarching spatial correlations but also unveils the concealed evolution of dynamic spatial correlations over time. By seamlessly integrating the graph convolutional module with temporal sample convolution and interaction blocks, we adeptly bridge multi-scale temporal correlations with the acquired dynamic spatial correlations. Additionally, we harness diverse temporal granularities data to comprehensively capture global temporal correlations. Experiments conducted on four real-world traffic datasets illustrate that ISGCN outperforms diverse types of state-of-the-art baseline models.
引用
收藏
页码:20767 / 20778
页数:12
相关论文
共 50 条
  • [31] Deep spatial-temporal information fusion dynamic graph convolutional network for traffic flow prediction
    Li, Guoyan
    Wang, Wei
    Wang, Li
    Liu, Yi
    Zhang, Minghui
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (01)
  • [32] Interpretable Traffic Accident Prediction: Attention Spatial-Temporal Multi-Graph Traffic Stream Learning Approach
    Li, Chaojie
    Zhang, Borui
    Wang, Zeyu
    Yang, Yin
    Zhou, Xiaojun
    Pan, Shirui
    Yu, Xinghuo
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (11) : 15574 - 15586
  • [33] Graph-Based Spatial-Temporal Convolutional Network for Vehicle Trajectory Prediction in Autonomous Driving
    Sheng, Zihao
    Xu, Yunwen
    Xue, Shibei
    Li, Dewei
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (10) : 17654 - 17665
  • [34] Learning Dynamics and Heterogeneity of Spatial-Temporal Graph Data for Traffic Forecasting
    Guo, Shengnan
    Lin, Youfang
    Wan, Huaiyu
    Li, Xiucheng
    Cong, Gao
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (11) : 5415 - 5428
  • [35] Spatial-Temporal Position-Aware Graph Convolution Networks for Traffic Flow Forecasting
    Zhao, Yiji
    Lin, Youfang
    Wen, Haomin
    Wei, Tonglong
    Jin, Xiyuan
    Wan, Huaiyu
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (08) : 8650 - 8666
  • [36] Capturing Local and Global Spatial-Temporal Correlations of Spatial-Temporal Graph Data for Traffic Flow Prediction
    Cao, Shuqin
    Wu, Libing
    Zhang, Rui
    Li, Jianxin
    Wu, Dan
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [37] Spatial-temporal upsampling graph convolutional network for daily long-term traffic speed prediction
    Zhang, Song
    Liu, Yanbing
    Xiao, Yunpeng
    He, Rui
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2022, 34 (10) : 8996 - 9010
  • [38] STTD: spatial-temporal transformer with double recurrent graph convolutional cooperative network for traffic flow prediction
    Zeng, Hui
    Cui, Qiang
    Huang, XiaoHui
    Duan, XueWei
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (09): : 12069 - 12089
  • [39] MVSTGN: A Multi-View Spatial-Temporal Graph Network for Cellular Traffic Prediction
    Yao, Yang
    Gu, Bo
    Su, Zhou
    Guizani, Mohsen
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2023, 22 (05) : 2837 - 2849
  • [40] Temporal Multi-Graph Convolutional Network for Traffic Flow Prediction
    Lv, Mingqi
    Hong, Zhaoxiong
    Chen, Ling
    Chen, Tieming
    Zhu, Tiantian
    Ji, Shouling
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (06) : 3337 - 3348