Spatial-Temporal Traffic Prediction With an Interactive Spatial-Enhanced Graph Convolutional Network Model

被引:0
|
作者
Li, Qin [1 ]
Xu, Pai [1 ]
Yang, Xuan [1 ]
Wu, Yuankai [2 ]
He, Hongwen [3 ]
He, Deqiang [1 ]
机构
[1] Guangxi Univ, Sch Mech Engn, Nanning 530004, Peoples R China
[2] Sichuan Univ, Coll Comp Sci, Chengdu 610064, Peoples R China
[3] Beijing Inst Technol, Sch Mech Engn, Beijing 100000, Peoples R China
基金
中国国家自然科学基金;
关键词
Correlation; Roads; Predictive models; Feature extraction; Convolution; Time series analysis; Data models; Accuracy; Vehicle dynamics; Spatiotemporal phenomena; Traffic prediction; graph convolutional network; multi-scale temporal correlations; dynamic spatial correlations;
D O I
10.1109/TITS.2024.3467172
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Accurate traffic prediction is crucial for effective traffic control and risk assessment. Traffic data exhibits a distinct nature, characterized by the interplay of swift, sudden short-term variations and enduring, extended long-term trends within specific regions. This intricate intermingling and interaction give rise to diverse spatial propagation patterns. Successful traffic prediction models necessitate mastering multi-scale temporal and dynamic spatial correlations, as well as their intricate interrelationships. In this study, we present a novel spatial-temporal traffic prediction framework named Interactive Spatial-Enhanced Graph Convolution Network (ISGCN). Our key innovation lies in the introduction of a novel dynamic graph convolution module, which not only captures overarching spatial correlations but also unveils the concealed evolution of dynamic spatial correlations over time. By seamlessly integrating the graph convolutional module with temporal sample convolution and interaction blocks, we adeptly bridge multi-scale temporal correlations with the acquired dynamic spatial correlations. Additionally, we harness diverse temporal granularities data to comprehensively capture global temporal correlations. Experiments conducted on four real-world traffic datasets illustrate that ISGCN outperforms diverse types of state-of-the-art baseline models.
引用
收藏
页码:20767 / 20778
页数:12
相关论文
共 50 条
  • [21] Dynamic multi-scale spatial-temporal graph convolutional network for traffic flow prediction
    Hu, Na
    Zhang, Dafang
    Xie, Kun
    Liang, Wei
    Li, Kuan-Ching
    Zomaya, Albert Y.
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 158 : 323 - 332
  • [22] Traffic Speed Prediction Based on Spatial-Temporal Dynamic and Static Graph Convolutional Recurrent Network
    Wenxi, Y.A.N.G.
    Ziling, W.A.N.G.
    Tao, C.U.I.
    Yudong, L.U.
    Zhijian, Q.U.
    International Journal of Advanced Computer Science and Applications, 2024, 15 (12): : 518 - 529
  • [23] Deep spatial-temporal information fusion dynamic graph convolutional network for traffic flow prediction
    Li, Guoyan
    Wang, Wei
    Wang, Li
    Liu, Yi
    Zhang, Minghui
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (01)
  • [24] Adaptive spatial-temporal graph attention network for traffic speed prediction
    Zhang, Xijun
    Zhang, Baoqi
    Zhang, Hong
    Nie, Shengyuan
    Zhang, Xianli
    High Technology Letters, 2024, 30 (03) : 221 - 230
  • [25] Adaptive spatial-temporal graph attention network for traffic speed prediction
    张玺君
    ZHANG Baoqi
    ZHANG Hong
    NIE Shengyuan
    ZHANG Xianli
    HighTechnologyLetters, 2024, 30 (03) : 221 - 230
  • [26] Spatial-Temporal Complex Graph Convolution Network for Traffic Flow Prediction
    Bao, Yinxin
    Huang, Jiashuang
    Shen, Qinqin
    Cao, Yang
    Ding, Weiping
    Shi, Zhenquan
    Shi, Quan
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 121
  • [27] Modeling Global Spatial-Temporal Graph Attention Network for Traffic Prediction
    Sun, Bin
    Zhao, Duan
    Shi, Xinguo
    He, Yongxin
    IEEE ACCESS, 2021, 9 : 8581 - 8594
  • [28] Network Traffic Prediction with Attention-based Spatial-Temporal Graph Network
    Peng, Yufei
    Guo, Yingya
    Hao, Run
    Lin, Junda
    2023 IEEE 24TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE SWITCHING AND ROUTING, HPSR, 2023,
  • [29] A dynamical spatial-temporal graph neural network for traffic demand prediction
    Huang, Feihu
    Yi, Peiyu
    Wang, Jince
    Li, Mengshi
    Peng, Jian
    Xiong, Xi
    INFORMATION SCIENCES, 2022, 594 : 286 - 304
  • [30] Dual Dynamic Spatial-Temporal Graph Convolution Network for Traffic Prediction
    Sun, Yanfeng
    Jiang, Xiangheng
    Hu, Yongli
    Duan, Fuqing
    Guo, Kan
    Wang, Boyue
    Gao, Junbin
    Yin, Baocai
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (12) : 23680 - 23693